

The MemSQL Query Optimizer: A modern optimizer for
real-time analytics in a distributed database

Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, Michael Andrews
MemSQL Inc.
534 4th Street

 San Francisco, CA, 94107, USA

{jack, samir, rob, raj, nika, mandrews}@memsql.com

ABSTRACT
Real-time analytics on massive datasets has become a very

common need in many enterprises. These applications require not

only rapid data ingest, but also quick answers to analytical queries

operating on the latest data. MemSQL is a distributed SQL

database designed to exploit memory-optimized, scale-out

architecture to enable real-time transactional and analytical

workloads which are fast, highly concurrent, and extremely

scalable. Many analytical queries in MemSQL’s customer

workloads are complex queries involving joins, aggregations, sub-

queries, etc. over star and snowflake schemas, often ad-hoc or

produced interactively by business intelligence tools. These

queries often require latencies of seconds or less, and therefore

require the optimizer to not only produce a high quality

distributed execution plan, but also produce it fast enough so that

optimization time does not become a bottleneck.

In this paper, we describe the architecture of the MemSQL

Query Optimizer and the design choices and innovations which

enable it quickly produce highly efficient execution plans for

complex distributed queries. We discuss how query rewrite

decisions oblivious of distribution cost can lead to poor

distributed execution plans, and argue that to choose high-quality

plans in a distributed database, the optimizer needs to be

distribution-aware in choosing join plans, applying query rewrites,

and costing plans. We discuss methods to make join enumeration

faster and more effective, such as a rewrite-based approach to

exploit bushy joins in queries involving multiple star schemas

without sacrificing optimization time. We demonstrate the

effectiveness of the MemSQL optimizer over queries from the

TPC-H benchmark and a real customer workload.

1. INTRODUCTION
An increasing number of enterprises rely on real-time analytical

pipelines for critical business decisions. These pipelines ingest

data into a distributed storage system, and run complex analytic

queries over the latest data. For many workloads it is critical that

the analytical queries are optimized and executed very quickly so

that results can be provided for interactive real-time decision

making. The ability to store and query huge amounts of data by

scaling storage and parallelizing execution across distributed

clusters with many nodes enables dramatic performance

improvements in execution times for analytical data workloads.

Several other industrial database systems such as SAP HANA [3],

Teradata/Aster, Netezza [15], SQL Server PDW [14], Oracle

Exadata [20], Pivotal GreenPlum [17], Vertica [7], and

VectorWise [21] have gained popularity and are designed to run

analytical queries very fast.

1.1 Overview of MemSQL

MemSQL is a distributed memory-optimized SQL database which

excels at mixed real-time analytical and transactional processing

at scale. MemSQL can store data in two formats: an in-memory

row-oriented store and a disk-backed column-oriented store.

Tables can be created in either rowstore or columnstore format,

and queries can involve any combination of both types of tables.

MemSQL takes advantage of in-memory data storage with

multiversion concurrency control and novel memory-optimized

lock-free data structures to enable reading and writing data highly

concurrently, allowing real-time analytics over an operational

database. MemSQL's columnstore uses innovative architectural

designs to enable real-time streaming analytical workloads with

low-latency queries over tables with ongoing writes [16]. Along

with its extremely scalable distributed architecture, these

innovations enable MemSQL to achieve sub-second query

latencies over large volumes of changing data. MemSQL is

designed to scale on commodity hardware and does not require

any special hardware or instruction set to demonstrate its raw

power.

MemSQL's distributed architecture is a shared-nothing

architecture (nodes in the distributed system do not share memory,

disk or CPU) with two tiers of nodes: scheduler nodes (called

aggregator nodes) and execution nodes (called leaf nodes).

Aggregator nodes serve as mediators between the client and the

cluster, while leaf nodes provide the data storage and query

processing backbone of the system. Users route queries to the

aggregator nodes, where they are parsed, optimized, and planned.

User data in MemSQL is distributed across the cluster in two

ways, selected on a per-table basis. For Distributed tables, rows

are hash-partitioned, or sharded, on a given set of columns, called

the shard key, across the leaf nodes. For Reference tables, the

table data is replicated across all nodes. Queries may involve any

combination of such tables.

In order to execute a query, the aggregator node converts the input

user query into a distributed query execution plan (DQEP). The

distributed query execution plan is a series of DQEP Steps,

operations which are executed on nodes across the cluster which

may include local computation and data movement via reading

data from remote tables on other leaf nodes. MemSQL represents

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

these DQEP Steps using a SQL-like syntax and framework, using

innovative SQL extensions called RemoteTables and

ResultTables. These enable the MemSQL Query Optimizer to

represent DQEPs using a SQL-like syntax and interface. We

discuss RemoteTables and ResultTables in more detail later.

Query plans are compiled to machine code and cached to expedite

subsequent executions. Rather than cache the results of the query,

MemSQL caches a compiled query plan to provide the most

efficient execution path. The compiled query plans do not pre-

specify values for the parameters, allowing MemSQL to substitute

values upon request, and enabling subsequent queries of the same

structure to run quickly, even with different parameter values.

1.2 Query Optimization in MemSQL

The goal of the query optimizer is to find the best query execution

plan for a given query by searching a wide space of potential

execution paths and then selecting the plan with the least cost.

This requires the optimizer to be rich in query rewrites and to be

able to determine the best execution plan based on a cost model of

query execution in the distributed database. Many of the queries

in MemSQL’s customer workloads are complex queries from

enterprise real-time analytical workloads, involving joins across

star and snowflake schemas, sorting, grouping and aggregations,

and nested sub-queries. These queries require powerful query

optimization to find high-quality execution plans, but query

optimization must also be fast enough so that optimization time

does not slow down query runtimes too much. Many of the

queries run in these workloads are ad-hoc and therefore require

query optimization; and even non-ad-hoc queries can often require

query optimization, for example due to significant changes in data

statistics as new data is ingested. These queries often must be

answered within latencies measured in seconds or less, despite

being highly complex and resource intensive.

Designing and developing a query optimizer for a distributed

query processing system is an extremely challenging task.

MemSQL is a high-performance database, built from the ground

up with innovative engineering such as memory-optimized lock-

free skip-lists and a columnstore engine capable of running real-

time streaming analytics. Because of the unique characteristics of

the MemSQL query execution engine, and because the real-time

workloads MemSQL runs often mean that the time budget for

optimizing a query is very limited, we decided to also build the

query optimizer from scratch. Reusing any existing optimizer

framework would not best address the goals and challenges in the

MemSQL context, while it would also mean inheriting all the

shortcomings of the framework and integration challenges.

Despite the technical and engineering challenges, we developed a

query optimizer rich in features and capable of producing high

quality query execution plans across a variety of complex

enterprise workloads.

The MemSQL Query Optimizer is a modular component in the

database engine. The optimizer framework is divided into three

major modules:

(1) Rewriter: The Rewriter applies SQL-to-SQL rewrites on the

query. Depending on the characteristics of the query and the

rewrite itself, the Rewriter decides whether to apply the

rewrite using heuristics or cost; the cost being the distributed

cost of running the query. The Rewriter intelligently applies

certain rewrites in a top-down fashion while applying others

in a bottom-up manner, and also interleaves rewrites that can

mutually benefit from each other.

(2) Enumerator: The Enumerator is a central component of the

optimizer, which determines the distributed join order and

data movement decisions as well as local join order and

access path selection. It considers a wide search space of

various execution alternatives and selects the best plan, based

on the cost models of the database operations and the

network data movement operations. The Enumerator is also

invoked by the Rewriter to cost transformed queries when

the Rewriter wants to perform a cost-based query rewrite.

(3) Planner: The Planner converts the chosen logical execution

plan to a sequence of distributed query and data movement

operations. The Planner uses SQL extensions called

RemoteTables and ResultTables to represent a series of Data

Movement Operations and local SQL Operations using a

SQL-like syntax and interface, making it easy to understand,

flexible, and extensible.

1.3 Contributions

In this paper, we make the following important contributions:

 We claim that if the cost-based query rewrite component is not
aware of distribution cost, then the optimizer runs the risk of
making poor decisions on query rewrites in a distributed
setting. We solve the problem in the MemSQL query optimizer
by calling the Enumerator within the Rewriter to cost rewritten
queries based on its distributed-aware cost model.

 We enhanced the Enumerator to enumerate very fast by
extensively pruning the operator order search space. We
implemented new heuristics that are distribution aware and use
them to prune out states.

 We propose a new algorithm that analyzes the join graph and
discovers bushy patterns; i.e. it identifies parts of the join graph
that could be advantageous to run as bushy joins and applies
them as a query rewrite mechanism.

The rest of the paper is organized as follows. Section 2 provides

an overview of MemSQL query optimization and the structure of

DQEPs. In Section 3, we deep dive into the details of the

Rewriter. Section 4 introduces a new algorithm to efficiently

discover bushy join patterns. Section 5 provides more insights into

the Enumerator, and Section 6 describes the Planner. We describe

our experimental results in Section 7. In Section 8, we briefly

summarize related work done in the area of designing optimizers

for distributed databases and also related work on reducing

optimization time. Finally, we conclude in Section 9.

2. OVERVIEW OF MEMSQL QUERY

OPTIMIZATION
When a user query is sent to MemSQL, the query is parsed to

form an operator tree. The operator tree is the input to the query

optimizer and it goes through the following steps:

 The Rewriter analyzes the operator tree and applies the

relevant query rewrites to the operator tree. If a particular

rewrite is beneficial, it will apply it and change the operator

tree to reflect the rewritten query. If a rewrite needs to be cost-

based, it will cost the original operator tree and the rewritten

operator tree and will pick the tree that has a lower cost.

 The operator tree is then sent to the Enumerator. The

Enumerator uses a search space exploration algorithm with

pruning. It takes into account the table statistics and the cost of

the distributed operations such as broadcasting and

partitioning to generate the best join order for the input query.

The output of the enumerator is an operator tree where the tree

nodes are annotated with directives for the Planner.

 The Planner consumes the annotated operator tree that is

produced by the Enumerator and generates the distributed

query execution plan (DQEP), consisting of a series of DQEP

Steps, SQL-like steps that can be sent as queries over the

network to be executed on nodes across the cluster. The

DQEP Steps are executed simultaneously on the leaves,

streaming data whenever possible. Each step runs in parallel

on all partitions of the database.

2.1 DQEP Example

Using the well-known TPC-H schema as an example, let us

assume that the customer table is a distributed table that has a

shard key on c_custkey and the orders table is also a distributed

that has a shard key on o_orderkey. The query is a simple join

between the two tables with a filter on the orders table.

SELECT c_custkey, o_orderdate

FROM orders, customer

WHERE o_custkey = c_custkey

 AND o_totalprice < 1000;

The query above is a simple join and filter query and hence, the

Rewriter will not be able to apply any query rewrites directly over

this query and the operator tree corresponding to the original input

query is fed to the Enumerator. It can be seen that the shard keys

of the tables do not exactly match with the join keys (orders is not

sharded on o_custkey), and therefore, there needs to be a data

movement operation in order to perform the join. The Enumerator

will pick a plan based on the statistics of the table, number of

nodes in the cluster, etc. One possible plan choice is to repartition

orders on o_custkey to match customer sharded on c_custkey. The

Planner converts this logical plan choice into an execution plan

consisting of the following DQEP Steps:

(1) CREATE RESULT TABLE r0

 PARTITION BY (o_custkey)

 AS

 SELECT orders.o_orderdate as o_orderdate,

 orders.o_custkey as o_custkey

 FROM orders

 WHERE orders.o_totalprices < 1000;

(2) SELECT customer.c_custkey as c_custkey,

 r0.o_orderdate as o_orderdate

 FROM REMOTE(r0(p)) JOIN customer

 WHERE r0.o_custkey = customer.c_custkey

In this DQEP, there are two SQL-like statements which are

executed using our ResultTable and RemoteTable SQL

extensions. The first of these steps operates locally on each

partition of the orders table, filtering and then partitioning the data

on the join column, o_custkey, and streaming the result into the

ResultTable r0. It can be seen that the Planner is able to push the

predicate associated with the orders table down into the first

DQEP step, to be executed before the data is moved.

The second statement in the DQEP draws from a distributed table,

indicated by the REMOTE keyword. This is the part of the DQEP

that moves the data prepared in the first step across the network.

Each partition reads the partitions of r0 which match the local

partition of customer. Then, the join between the result of the

previous step and the customer table is performed across all

partitions. Every leaf node returns its result set to the aggregator

node, which is responsible for combining and merging the result

sets as needed and delivering them back to the client application.

2.2 Query Optimization Example
In this section, we illustrate the steps in the optimization and

planning process for an example query. TPC-H Query 17 is an

interesting example in that it shows interesting aspects of all three

components of the optimizer. In this example, lineitem and part

are distributed rowstore tables hash-partitioned on l_orderkey and

p_partkey, respectively. The query is:

SELECT sum(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem,

 part

WHERE p_partkey = l_partkey

 AND p_brand = 'Brand#43'

 AND p_container = 'LG PACK'

 AND l_quantity < (

 SELECT 0.2 * avg(l_quantity)

 FROM lineitem

 WHERE l_partkey = p_partkey)

Rewriter: The Rewriter applies all the query rewrites and comes

up with the following rewritten query, in which the scalar

subquery has been converted to a join, and we have pushed the

join with part down into the subquery, past the group by. This is

beneficial because it enables more flexible join plan and DQEP.

There is no way to efficiently execute the original query without

transforming it, because the correlating condition of the subselect

does not match the shard key of lineitem. Therefore, evaluating

the correlated subselect would require doing a remote query for

each row of part, which is obviously not performant, or first

repartitioning lineitem on l_partkey, which is expensive because

lineitem is large. In contrast, the transformed query can be

executed efficiently by starting with part, which has a selective

filter, and seeking into lineitem for the joins, as determined by the

Enumerator.

SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly

FROM lineitem,

 (

 SELECT 0.2 * Avg(l_quantity) AS s_avg,

 l_partkey AS s_partkey

 FROM lineitem,

 part

 WHERE p_brand = 'Brand#43'

 AND p_container = 'LG PACK'

 AND p_partkey = l_partkey

 GROUP BY l_partkey

) sub

WHERE s_partkey = l_partkey

 AND l_quantity < s_avg

Enumerator: The Enumerator chooses the cheapest join plan and

annotates each join with data movement operations and type. The

best plan is to broadcast the filtered rows from part and from sub,

because the best alternative would involve reshuffling the entire

lineitem table, which is far larger and thus more expensive. The

query plan, with some simplifications, is:

Project [s2 / 7.0 AS avg_yearly]

Aggregate [SUM(1) AS s2]

Gather partitions:all

Aggregate [SUM(lineitem_1.l_extendedprice) AS s1]

Filter [lineitem_1.l_quantity < s_avg]

NestedLoopJoin

|---IndexRangeScan lineitem AS lineitem_1,

| KEY (l_partkey) scan:[l_partkey = p_partkey]

Broadcast

HashGroupBy [AVG(l_quantity) AS s_avg]

 groups:[l_partkey]

NestedLoopJoin

|---IndexRangeScan lineitem,

| KEY (l_partkey) scan:[l_partkey = p_partkey]

Broadcast

Filter [p_container = 'LG PACK' AND

 p_brand = 'Brand#43']

TableScan part, PRIMARY KEY (p_partkey)

Planner: The planner creates the DQEP according to the chosen

query plan, consisting of a series of SQL statements with

ResultTables and RemoteTables. Playing to the strengths of

ResultTables, the entire query can be streamed since there are no

pipeline-blocking operators. The group-by can also be streamed

by taking advantage of the existing index on the p_partkey

column from the part table. For clarity, we show a simplified

DQEP, which omits the optimizations for broadcasts described in

Section 6.2.1.

CREATE RESULT TABLE r0 AS

SELECT p_partkey

FROM part

WHERE p_brand = 'Brand#43'

AND p_container = 'LG PACK';

CREATE RESULT TABLE r1 AS

SELECT 0.2 * Avg(l_quantity) AS s_avg,

 l_partkey as s_partkey

FROM REMOTE(r0),

 lineitem

WHERE p_partkey = l_partkey

GROUP BY l_partkey;

SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly

FROM REMOTE(r1),

 lineitem

WHERE p_partkey = s_partkey

 AND l_quantity < s_avg

3. REWRITER
The MemSQL query optimizer considers a wide variety of query

rewrites, which convert a given SQL query to another

semantically equivalent SQL query, which may correspond to a

better performing plan. The Rewriter locates opportunities to

apply a query transformation, decides based on heuristics or cost

estimates whether the rewrite is beneficial, and if so applies the

transformation to yield a new query operator tree.

3.1 Heuristic and Cost-Based Rewrites

A very simple example of a query transformation performed by

the Rewriter is the Column Elimination transformation, which

removes any projection columns that are never used, thus saving

on computation, I/O, and network resources. This transformation

is always beneficial, so the Rewriter applies the transformation

whenever semantically valid. On the other hand, the Group-By

Pushdown transformation, which modifies a query by reordering a

group by before a join to evaluate the group by earlier, may or

may not be advantageous depending on the sizes of the joins and

the cardinality of the group by, so deciding whether to apply this

transformation requires making cost estimates.

We also make use of heuristics in many rewrite decisions. For

example, Sub-Query Merging generally merges subselects

whenever possible. However, when very large numbers of tables

are being joined together under a number of simple views,

merging all the subselects would result in a single large join of all

these tables, which could be expensive for the Enumerator to

effectively optimize. Merging these subselects discards

information about the structure of the join graph, which may be

helpful for optimizing the join even though it carries no additional

semantic information. For example, in a snowstorm query, which

includes multiple large fact tables and their associated dimension

tables, the input query may contain views corresponding to joins

of particular fact tables with their associated dimension tables,

which can be efficiently evaluated and then joined together in a

bushy join plan. We can use heuristics to detect this type of

situation and avoid merging all the views in such cases. Of course,

this restricts the space of possible join orders we can consider,

which is only acceptable when we expect the join tree structure

represented by the subselects to roughly correspond to the optimal

join tree. In these situations, we can find a close-to-optimal join

tree without needing to pay the high cost of join enumeration over

the full, large set of tables including searching for bushy joins.

3.2 Interleaving of Rewrites

The Rewriter applies many query rewrites, many of which have

important interactions with each other, so we must order the

transformations intelligently, and in some cases interleave them.

For example, consider Outer Join to Inner Join conversion, which

detects outer joins that can be converted to inner joins because a

predicate later in the query rejects NULLs of the outer table, and

Predicate Pushdown, which finds predicates on a derived table

which can be pushed down into the sub-select. Pushing a

predicate down may enable Outer Join to Inner Join conversion if

that predicate rejects NULLs of the outer table. However, Outer

Join to Inner Join conversion may also enable Predicate

Pushdown because a predicate in the ON condition of a left outer

join can now potentially be pushed inside the right table, for

example. Therefore, to transform the query as much as possible,

we interleave the two rewrites: going top-down over each select

block, we first apply Outer Join to Inner Join conversion, and

then Predicate Pushdown, before processing any subselects.

On the other hand, some rewrites such as the bushy join rewrite

discussed later are done bottom-up, because they are cost-based

and their cost can be affected by the rewrites chosen and plans

generated for subselects in the subtree.

3.3 Costing Rewrites

We can estimate the cost of a candidate query transformation by

calling the Enumerator, to see how the transformation affects the

potential execution plans of the query tree, including join orders

and group-by execution methods of any affected select blocks.

Note that the Enumerator only needs to re-cost those select blocks

which are changed, as we can reuse the saved costing annotations

for any unchanged select blocks.

It is important that the Enumerator determines the best execution

plan taking into account data distribution, including when called

by the Rewriter for the purposes of cost-based rewrites, because

many query rewrites can potentially alter the distributed plan,

including by affecting which operators like joins and groupings

can be co-located, and which and how much data needs to be sent

across the network. If the Rewriter makes a decision on whether

to apply a rewrite based on a model that is not aware of

distribution cost, the optimizer can potentially chose inefficient

distributed plans.

Let’s consider a relatively simple example to illustrate the point.

Let us consider two tables T1 (a, b) and T2 (a, b) which are

sharded on the columns T1.b and T2.a, respectively, and with a

unique key on column a for T2:

CREATE TABLE T1 (a int, b int, shard key (b))

CREATE TABLE T2 (a int, b int, shard key (a),

 unique key (a))

Consider the following query Q1:

Q1: SELECT sum(T1.b) AS s FROM T1, T2

 WHERE T1.a = T2.a

 GROUP BY T1.a, T1.b

This query can be rewritten to with the Group-By Pushdown

transformation, which reorders the group-by before the join, as

shown in the transformed query Q2:

Q2: SELECT V.s from T2,

 (SELECT a,

 sum(b) as s

 FROM T1

 GROUP BY T1.a, T1.b

) V

 WHERE V.a = T2.a;

Let 𝑅1 = 200,000 be the rowcount of T1 and 𝑅2 = 50,000 be the

rowcount of T2. Let 𝑆𝐺 =
1

4
 be the fraction of rows of T1 left after

grouping on (T1.a, T1.b), i.e. 𝑅1𝑆𝐺 = 50,000 is the number of

distinct tuples of (T1.a, T1.b). Let 𝑆𝐽 =
1

10
 be the fraction of rows

of T1 left after the join between T1.a and T2.a (note that each

matched row of T1 produces only one row in the join since T2.a is

a unique key). Assume the selectivity of the join is independent of

the grouping, i.e. any given row has a probability 𝑆𝐽 of matching a

row of T2 in the join. So the number of rows after joining T1 and

T2 on T1.a = T2.a is 𝑅1𝑆𝐽 = 20,000, and the number of rows

after both the join and the group-by of Q1 is 𝑅1𝑆𝐽𝑆𝐺 = 5,000.

Assume seeking into the unique key on T2.a has a lookup cost of

𝐶𝐽 = 1 units, and the group-by is executed using a hash table with

an average cost of 𝐶𝐺 = 1 units per row. Then the costs of the

query execution plans for Q1 without the Group-By Pushdown

transformation, and Q2 with the transformation, without taking

distribution into account (i.e. assuming the entire query is

executed locally) are:

𝐶𝑜𝑠𝑡𝑄1 = 𝑅1𝐶𝐽 + 𝑅1𝑆𝐽𝐶𝐺 = 200,000𝐶𝐽 + 20,000𝐶𝐺 = 220,000

𝐶𝑜𝑠𝑡𝑄2 = 𝑅1𝐶𝐺 + 𝑅1𝑆𝐺𝐶𝐽 = 200,000𝐶𝐺 + 50,000𝐶𝐽 = 250,000

For these example values of 𝐶𝐺 and 𝐶𝐽 as well as many other

plausible values, 𝐶𝑜𝑠𝑡𝑄1 < 𝐶𝑜𝑠𝑡𝑄2. Therefore, in the context of a

non-distributed query or a cost model that does not take

distribution into account, the rewrite would be considered

disadvantageous and we would execute the plan Q1.

However, if we want to run the query in a distributed setting, we

need to move data from at least one of the tables to execute the

join. Since T2 is sharded on T2.a, but T1 is not sharded on T1.a,

we can best compute this join by reshuffling T1 or broadcasting

T2, depending on their sizes. Assuming the size of the cluster is

large enough, e.g. 10 nodes, and given that T2 is not much smaller

than T1, reshuffling T1 on T1.a is a cheaper plan than

broadcasting T2 for the join.

The group-by can be executed after the join in plan Q1 without

any further data movement, since the result of the join is

partitioned on T1.a, so all rows of each group are located on the

same partition. The group-by can also be executed before the join

in plan Q2 without any data movement, because T1 is sharded on

T1.b, so all groups are also located on the same partition.

In the distributed setting, we would incur an additional cost of

shuffling all rows of T1 for plan Q1. For plan Q2, the plan would

be to first execute the group-by locally on each partition, reshuffle

the result, and finally join against T2, so only 𝑇1𝑆𝐺 rows must be

reshuffled since the group-by reduces the rowset.

The distributed query execution plans in MemSQL are:

Q1:

Gather partitions:all

Project [r0.s]

NestedLoopJoin

|---IndexSeek T2, UNIQUE KEY (a) scan:[a = r0.a]

Repartition AS r0 shard_key:[a]

HashGroupBy [SUM(T1.b) AS s] groups:[T1.a, T1.b]

TableScan T1

Q2:

Gather partitions:all

Project [r0.s]

HashGroupBy [SUM(r0.b) AS s] groups:[r0.a, r0.b]

NestedLoopJoin

|---IndexSeek T2, UNIQUE KEY (a) scan:[a = r0.a]

Repartition AS r0 shard_key:[a]

TableScan T1

Assuming the average cost of executing a reshuffle, which

includes e.g. network and hash evaluation costs, is 𝐶𝑅 = 3 units

per row, the costs are:

𝐶𝑜𝑠𝑡𝑄1 = 𝑅1𝐶𝑅 + 𝑅1𝐶𝐽 + 𝑅1𝑆𝐽𝐶𝐺

= 200,000 (𝐶𝑅 + 𝐶𝐽) + 20,000 𝐶𝐺

= 620,000

𝐶𝑜𝑠𝑡𝑄2 = 𝑅1𝐶𝐺 + 𝑅1𝑆𝐺𝐶𝑅 + 𝑅1𝑆𝐺𝐶𝐽

= 200,000𝐶𝐺 + 50,000(𝐶𝑅 + 𝐶𝐽)

= 400,000

For these example parameter values, 𝐶𝑜𝑠𝑡𝑄1 > 𝐶𝑜𝑠𝑡𝑄2 because

the reshuffle significantly impacts the cost of the plans. This is

especially likely to be the case in clusters with slower network

where network costs may often dominate the cost of a query. In an

Amazon EC cluster, we found that plan Q2 runs around 2x faster

than Q1 in MemSQL. A rewrite decision based on a distribution-

oblivious cost model would have incorrectly chosen Q1.

The example query Q1 used is a very simple query involving a

join and a group-by. Many more complex queries that undergo a

series of mutually interacting and interleaved query rewrites

would also require the Enumerator to cost plans taking data

distribution into account.

Comparison to PDW: Microsoft PDW’s Query Optimizer [14]

performs distributed costing for join order enumeration, but the

query rewrites are all applied in the single-node SQL Server

optimizer. The SQL Server optimizer (in a single SQL Server

instance) uses the “shell database” that contains the statistical

information of the tables, performs the cost-based rewrites and

generates the space of execution alternatives (called MEMO) that

PDW consumes. Without distributed costing inside the SQL

Server optimizer, PDW will produce inefficient distributed

execution plans where the query rewrites affect the distributed

cost significantly.

4. BUSHY JOINS
As discussed in the literature [8][10], searching all possible join

plans, including bushy join plans, as part of the join enumeration

makes the problem of finding the optimal join permutation

extremely costly and time-consuming. As a result, many database

systems do not consider bushy joins, limiting their search to left-

deep or right-deep join trees. However, for many query shapes,

such as shapes involving multiple star or snowflake schemas,

bushy join plans are critical for achieving good execution

performance, with massive speedups compared to the best non-

bushy join plan.

Our strategy for finding good join plans, which may be bushy in

nature, without sacrificing optimization time by paying the cost of

searching all bushy join plans, is a heuristic-based approach which

considers only promising bushy joins instead of all possible

cases. We look for common query shapes that benefit from bushy

plans and introduce bushiness via the framework of a query

rewrite. In our previous work [12], we demonstrated the

effectiveness of this general approach. A direct advantage of

generating bushy plans in this way is that we would only consider

bushy plans when there is a potential benefit as determined by the

heuristics, which allows narrow and targeted exploration of the

bushy plan space. As we started analyzing more complex query

workloads from real world customers, we realized that while

generating bushy join plans via query rewrites was a good idea,

the heuristics that we used to generate the candidate plans and the

rewrite method itself need to be refined and cover more generic

cases. We will discuss our new method for finding bushy join

plans which improves on the previous approach.

4.1 Bushy Plans via Query Rewrite
Even if the Enumerator considers only left-deep join trees, it is

easy to generate a query execution plan that is bushy in nature.

This can be done by creating a derived table using the query

rewrite mechanism and using the derived table as the right side of

the join. The Enumerator works as usual; it optimizes the derived

table like any other table in the join. Once a new derived table is

introduced as part of the query rewrite, the Rewriter calls the

Enumerator to cost the rewritten query, and then based on the

cost, determines whether to retain the newly introduced subselect.

The Bushy Plan rewrite clearly must make cost-based decisions

because comparing two bushy plan options involves considering

join execution methods, distribution methods, etc. However, the

choices of which plans to consider is heuristic-based to enable this

approach to efficiently explore candidate plans which are likely to

be beneficial.

4.2 Bushy Plan Heuristics
Using query rewrite mechanism, it is possible to consider

promising bushy joins by forming one or more subselects, each of

which has an independent left-deep join tree. The Enumerator

chooses the best left-deep join tree within each select block. By

placing a derived table on the right side of a join, we form a bushy

join tree. For example, consider a snowstorm shape query, where

there are multiple large fact tables, each joined against its

associated dimension table(s), which have single-table filters. The

best left-deep join plan generally must join each fact table after

the first by either joining it before its associated dimension tables,

when its size has not yet been reduced by their filters, or by

joining the dimension table first, an expensive Cartesian product

join. We may benefit greatly from a bushy join plan where we

join the fact table with its dimension tables, benefiting from their

filters, before joining it to the previous tables.

Our algorithm to generate bushy join plans traverses the join

graph and looks at the graph connections to determine whether

any such bushy subselects are possible and what tables may be

part of those subselects. For every such subselect that could be

potentially formed, it calls the Enumerator to determine the cost in

order to decide which candidate option is better. The basic

algorithm is as follows:

1. Collect the set of tables in the join and build a graph of the

tables in which each table is a vertex and each join predicate

between a pair of tables corresponds to an edge between their

vertices.

2. Identify candidate satellite tables, which are tables with at

least one selective predicate on them, such as a predicate of

the form column = constant or column IN

(constant,…).

3. Out of the list of candidate satellite tables, identify the

satellite tables, which are the tables connected to only other

table in the graph (although possibly with multiple join

predicates).

4. Identify seed tables, which are tables that are connected to at

least two distinct tables, at least one of which is a satellite

table. (Observe that no satellite table can be adjacent to more

than one seed table because of the requirement that satellite

tables are connected to only one table.)

5. For each seed table:

a) Use the costing mechanism to compute the cost 𝐶1 of

the current plan.

b) Create a derived table containing the seed table joined

to its adjacent satellite tables. Note that some SQL

operators may prevent some satellite tables from being

moved inside the subselect, in which case move as

many as possible.

c) Apply the Predicate Pushdown rewrite followed by the

Column Elimination rewrite to ensure that any predicate

in the outer select which can be evaluated in the inner

select is moved inside and that no columns are provided

by the inner select which are not needed in the outer

select.

d) Compute the new cost 𝐶2 of the modified plan. If

𝐶1 < 𝐶2, discard the changes made in steps (b) and (c),

and otherwise keep them.

Our strategy is very generic and does not depend on table

cardinalities and/or selectivities to identify possible bushy

combinations. In a snowstorm-type query, this will find fact

tables, which are often joined to the primary key of their

associated dimension tables where at least one of the dimension

tables has a single-table filter. This is exactly the type of situation

where we most benefit from generating a bushy join plan. The

Rewriter will generate different candidate bushy join trees using

these seed tables (one bushy view per seed table) and it will use

the Enumerator to cost each combination and then (based on cost)

decide which ones to retain. As an example, consider TPC-DS [9]

query 25:

SELECT …

FROM store_sales ss,

 store_returns sr,

 catalog_sales cs,

 date_dim d1,

 date_dim d2,

 date_dim d3,

 store s,

 item i

WHERE d1.d_moy = 4

 AND d1.d_year = 2000

 AND d1.d_date_sk = ss_sold_date_sk

 AND i_item_sk = ss_item_sk

 AND s_store_sk = ss_store_sk

 AND ss_customer_sk = sr_customer_sk

 AND ss_item_sk = sr_item_sk

 AND ss_ticket_number = sr_ticket_number

 AND sr_returned_date_sk = d2.d_date_sk

 AND d2.d_moy BETWEEN 4 AND 10

 AND d2.d_year = 2000

 AND sr_customer_sk = cs_bill_customer_sk

 AND sr_item_sk = cs_item_sk

 AND cs_sold_date_sk = d3.d_date_sk

 AND d3.d_moy BETWEEN 4 AND 10

 AND d3.d_year = 2000

GROUP BY …

ORDER BY …

We will focus on the join and ignore the group-by, aggregations,

and order-by in our discussion of this example.

The join graph is shown in Figure 1. The tables with filters are

colored green. There are three fact tables (store_sales,

store_returns, and catalog_sales), each joined against one

dimension table with a filter (date_dim). All of the joins are on a

primary key or another highly selective key.

Figure 1: Join graph for TPC-DS q25.

In a distributed setting, the best left-deep join plan chosen by the

Enumerator is (d1, ss, sr, d2, s, i, d3, cs), shown in Figure 2a. All

of these joins have selective join conditions except for one: the

Join node colored red, when we join d3, is a Cartesian product

join, because d3 only has join predicates with cs. This is

expensive, but given the restriction to left-deep join trees it is the

better alternative compared to first joining cs without having any

of the filtering that comes from the single-table filters on d3.

 (a) Left-deep join (b) Bushy join

Figure 2: Join trees for TPC-DS q25.

Our algorithm works as follows. We first build the join graph and

then identify the candidate satellite tables, which in this case are

{d1, d2, d3} since each of them has one selective predicate. We

then identify the satellite tables, which are connected to more than

one table in the join graph; in this example, all the three tables are

connected with only table and so the satellite tables are {d1, d2,

d3}. We now identity the set of seed tables, the tables connected

to at least two distinct tables, one of which must be a satellite

table. Our seed tables are ss (connected to satellite d1 and sr), sr

(connected to satellite d2 and ss), and cs (connected to satellite d3

and sr).

The Rewriter tries to cost each combination and uses the

Enumerator to cost every rewritten combination. The final bushy

join order that is chosen is (d1, ss, sr, d2, s, i, (d3, cs)), shown in

Figure 2b. It can be seen that out of all candidate seed tables,

bushiness was introduced only for cs and its satellite tables. We

also consider ss and sr as seed tables, but these bushy views do

not improve the cost of the query and are rejected. The bushy join

plan runs 10.1 times as fast as the left-deep join plan. The bushy

join plan is represented with a derived table as follows:

SELECT …

FROM store_sales,

 store_returns,

 date_dim d1,

 date_dim d2,

 store,

 item,

 (SELECT *

 FROM catalog_sales,

 date_dim d3

 WHERE cs_sold_date_sk = d3.d_date_sk

 AND d3.d_moy BETWEEN 4 AND 10

 AND d3.d_year = 2000) sub

WHERE d1.d_moy = 4

 AND d1.d_year = 2000

 AND d1.d_date_sk = ss_sold_date_sk

 AND i_item_sk = ss_item_sk

 AND s_store_sk = ss_store_sk

 AND ss_customer_sk = sr_customer_sk

 AND ss_item_sk = sr_item_sk

 AND ss_ticket_number = sr_ticket_number

 AND sr_returned_date_sk = d2.d_date_sk

 AND d2.d_moy BETWEEN 4 AND 10

 AND d2.d_year = 2000

 AND sr_customer_sk = cs_bill_customer_sk

 AND sr_item_sk = cs_item_sk

It is worthwhile to note here that the technique of using a query

rewrite mechanism to generate bushy join plans is not new and

has already been explored in [1]. However, the methods used to

achieve the same in [1] and in our framework are totally different

from each other. The mechanism in [1] identifies fact (large),

dimension (small) and branch tables using table cardinalities,

statistics and join conditions. It then uses a combination of such

tables to form a view (sub-select). Instead, the MemSQL Rewriter

does not do any categorization of tables based on cardinalities and

statistics. It only traverses the join graph and only looks at number

of connections in the graph to identity the set of seed tables. In

[1], the fact table always has to have an effective (after applying

filters) cardinality that is more than a minimum threshold. Our

solution does not have any such restriction; in fact, we never look

at cardinalities and it could easily happen that the effective

cardinality of the seed table is less than that of the satellite table.

Also in [1], each fact table needs a join edge with at least one

other fact table; in our case, seed tables need not necessarily join

with another seed table. These fundamental differences enable us

to cover a lot of more generic cases that might benefit from bushy

join plans. We will cover one such case from a real customer

workload in our Experiments Section.

5. ENUMERATOR
The Enumerator is the backbone of the MemSQL Query

optimizer. It is the component that connects the Rewriter and the

Planner; the Rewriter feeds query operator trees into the

Enumerator for the Enumerator to determine the execution plan,

including distributed data movement decisions and join orders,

and annotate the operator tree accordingly. The Rewriter is the

component that does a lot of logical optimization leading to the

Enumerator; which does the physical optimization of the query.

The Enumerator needs to look at cost, table and network statistics,

query characteristics etc. to perform the physical optimization.

Just like any other industry-strength query optimizers, the

Enumerator has a costing model and considers a wide search

space of various execution alternatives to select the best join

order. The Enumerator is built on the assumption that parallelizing

the best serial plan is not good enough for distributed query

processing. [14] discusses this claim as well, and we also

conducted our own set of experiments over benchmarks like TPC-

H and TPC-DS and several customer workloads to find illustrative

examples of the need for join choices to be distribution aware and

the need for the optimizer, including the enumeration algorithm,

to take into account the cost of the data movement operations to

come up with the best DQEP. A key focus of the Enumerator is on

choosing high-quality distributed query plans, including taking

advantage of co-located (bucketed) joins when possible and

minimizing data distribution costs. It is also interesting to note

that the Enumerator must handle physical optimization for queries

involving columnstore and rowstore tables in any combination.

This requires searching execution plans appropriate for both

storage formats and modeling them in the cost model.

5.1 Search Space Analysis

The Enumerator optimizes the join plan within each select block,

but does not consider optimizations involving moving joins

between different select blocks, which is instead done by the

Rewriter. The Enumerator processes the select blocks bottom-up,

starting by optimizing the smallest expressions (subselects), and

then using the annotation information to progressively optimize

larger expressions (subselects that are parents of other sub-

selects). Eventually, the physical plan for the entire operator tree

is determined when the enumerator is done with the outermost

select block. Even though a bottom-up approach is used, a top-

down enumeration should still be applicable with the same set of

pruning heuristics. As mentioned before, the set of possible plans

is huge and the search space size increases by the introduction of

data movement operations. To limit the combinatorial explosion,

the Enumerator implements a bottom-up System-R [11] style

dynamic programming based join order enumerator with

interesting properties. System-R style optimizers have the notion

of interesting orders to help take advantage of physical properties

like sort order etc. The MemSQL Optimizer Enumerator employs

an interesting property of sharding distribution, e.g. the set of

columns by which data is sharded across the cluster. Interesting

shard keys that can be considered are (1) predicate columns of

equality joins and (2) grouping columns. In the dynamic

programming, we keep track of the best cost for each candidate

join set that yields data distributed on each interesting sharding.

By examining plans that yield different sharding distributions, we

are able to find plans that later take advantage of the sharding

distribution. Even though they may be more expensive for an

initial part of the join, they may end up cheaper by avoiding the

need for a reshuffle or broadcast later.

5.2 Distributed Costing

The cost model for the distributed optimizer consists of the cost

model for local SQL relational operations like joins, grouping etc.

and the data movement operations. For distributed queries which

require non-co-located joins because the shard keys of tables

involved do not match the join keys, the data movement

processing times are often a dominant component of the query

execution time. The cost model for data movement operations

assumes that every query runs in isolation; the hardware is

homogenous across the cluster; and the data is uniformly

distributed across all the nodes. These assumptions are not new

and are discussed in [14]; they are clearly not ideal in all cases but

are helpful simplifications which work well in most cases.

Data Movement Operations: The data movement operations

supported by the distributed query execution engine are:

 Broadcast: Tuples are broadcasted from each leaf node to all

other leaf nodes.

 Partition (also called Reshuffle): Tuples are moved from each

leaf node to a target leaf node based on a hash of a chosen set

of distribution columns.

Data Movement Operation Costs: The costs for data movement

operations include the network and computational costs of

sending data over the network, as well as other computational

costs required for the operations such as hashing costs for

reshuffles. The cost is estimated as follows:

 Broadcast: 𝑅 𝐷

 Partition:
1

𝑁
(𝑅 𝐷 + 𝑅 𝐻)

where R is the number of rows which need to be moved, D is the

average cost per row of moving data (which depends on the row

size and network factors), N is the number of nodes, and H is the

cost per row of evaluating hashes for partitioning.

5.3 Fast Enumeration

As mentioned earlier, in many real-time analytics workloads,

queries need to finish execution within a few seconds or less than

a second, and therefore require the optimizer to not only produce

the best distributed execution plan but also produce it fast (with

low query optimization latency) so that optimization time does not

become too expensive a component of query latency. To cost

query rewrite combinations, the Rewriter calls the Enumerator

and this requires the enumeration to be very fast. This requires the

Enumerator to use pruning techniques to filter our plans. In the

world of distributed query optimization, any pruning technique

that is employed needs to be aware of data distribution; a heuristic

technique based on table cardinalities, schema and selectivities is

not good enough. The MemSQL Enumerator uses several

advanced pruning techniques to enumerate operator orders, thus

making the process very fast. A discussion of those techniques is

available in [12].

6. PLANNER
The role of the planner is to convert the rewritten and enumerated

query into a physical execution plan. The Planner converts the

output of the Enumerator to a physical execution plan that can be

distributed to all the nodes in a cluster. It consumes the annotated

operator tree that is produced by the Enumerator and generates the

DQEP Steps that are required to execute the query. DQEP Steps

are SQL-like steps that can be sent as query text over the network.

The DQEP Steps are executed simultaneously on the leaves,

streaming data whenever possible. Each step runs in parallel on all

partitions of the database.

6.1 Remote Tables and Result Tables

In MemSQL, each step of a DQEP may consist of data movement

and local computation. Because SQL is both easy to reason about

and already supported in the engine, all communication between

nodes in a MemSQL cluster is done via the SQL interface. This

transparently enables features such as node-level optimization and

plan extensibility. MemSQL implements and employs two

important SQL extensions to support data movement and node-

level computation.

6.1.1 Remote Tables
In a simple query, the only inter-node communication required is

from the leaf nodes to the aggregator node. Wherever possible,

filters and grouping expressions are pushed down into the leaf

queries to increase parallelism. When more complex queries are

considered, data movement between leaf nodes is required. The

SQL extension RemoteTables allows leaf nodes to query all

partitions in the same way an aggregator would. Consider the

following query:

SELECT facts.id, facts.value

FROM REMOTE(facts) as facts

WHERE facts.value > 4

This query can run on any leaf in the MemSQL cluster. The

REMOTE keyword indicates to the engine that the relation is

comprised of tuples from all partitions of the facts table, rather

than only the local partition. In the interest of exposing an explicit

syntax for the planner to use, the filter is not delegated to each

other partition as it would have been in an aggregator query. For

the planner to indicate precisely when particular operations should

be computed, MemSQL employs an extension called

ResultTables.

6.1.2 Result Tables
Using RemoteTables alone would be enough to evaluate any

relational expression on a cluster of nodes, but it has certain

drawbacks. In a fully distributed query, each partition of the

database will need to query a RemoteTable. However, with each

partition querying all other partitions, a lot of work will be

repeated quadratically. Even table scans can be expensive when

repeated for each partition of the database. To share

computational work, MemSQL nodes can store local

ResultTables. A result table is a temporary result set, which stores

one partition of a distributed intermediate result. These tables are

defined using a SQL SELECT statement, and are read-only after

definition. In this way, the planner can delegate work to the

partitions with finer granularity. In the example above, the

planner could arrange for each partition to run the following query

on each partition before computing the final select:

CREATE RESULT TABLE facts_filtered

AS SELECT facts.id, facts.value

 FROM facts

 WHERE facts.value > 4

The RemoteTable can select from this new relation instead of the

original base table to avoid running the filter on the receiving end.

6.2 Using Remote Tables and Result Tables in

DQEPs
To fully represent a DQEP, the planner must lay out a series of

data movement and computational steps in SQL. In a MemSQL

plan, this is accomplished by chaining these operations together

within ResultTables. Each stage of the DQEP is represented by a

compute step which optionally pulls rows from another stage of

the execution, using ResultTables to represent intermediate result

sets. In this way, complex data flow and computation can be

expressed using only these SQL extensions. However,

ResultTables need not be materialized as actual tables, and for

some query execution plans they are simply an abstraction and the

underlying execution can stream rows from the writer to the

reader without writing to a physical table.

6.2.1 Broadcasts
Consider the example query

SELECT * FROM x JOIN y WHERE x.a = y.a AND x.b < 2

AND y.c > 5

where table x is sharded on a but table y is not (if they are both

sharded on a, then the optimizer would take advantage of that to

do a colocated join). In this case, depending on the relative sizes

of the tables after applying filters, the best plan may be to either

broadcast x or reshuffle y to match the sharding of x. If table x is

much smaller than table y after the relevant filters, the best plan

would be to broadcast x after the filter. This can be executed with

the following DQEP:

(1) CREATE RESULT TABLE r1 AS SELECT * FROM x

WHERE x.b < 2 (on every partition)

(2) CREATE RESULT TABLE r2 AS SELECT * FROM

REMOTE(r1) (on every node)

(3) SELECT * FROM r2 JOIN y WHERE y.c > 5 AND r2.a

= y.a (on every partition)

(1) is executed on every partition, to apply the filter x.b < 2

locally prior to the broadcast. Then (2) is executed on every leaf

node to bring the filtered rows of x to every node. In this case, r2

would be materialized into a temporary hashtable for the join with

y in (3). (3) is executed on every leaf node, with results streamed

across the network to the aggregator and then to the client. The

use of r2 allows the broadcasted data to be brought to each leaf

once, whereas if (3) read directly from REMOTE(r1), the query

would produce the same results but every partition would

separately read the broadcasted data from across the network and

materialize the resulting table.

The flexibility of the RemoteTables and ResultTables abstraction

also easily enables various alternate execution methods for this

broadcast. For example, another possible DQEP for this broadcast

is:

(1) CREATE RESULT TABLE r1 AS SELECT * FROM x

WHERE x.b < 2 (on every partition)

(2) CREATE RESULT TABLE r2 AS SELECT * FROM

REMOTE(r1) (on a single node)

(3) CREATE RESULT TABLE r3 AS SELECT * FROM

REMOTE(r2) (on every node)

(4) SELECT * FROM r3 JOIN y WHERE y.c > 5 AND r3.a

= y.a (on every partition)

Here, a single node reads the broadcasted rows from across the

cluster, and then distributes them to all other nodes. This is the

smallest example of a broadcast tree. Compared to the first plan,

only linearly many connections are used across the cluster instead

of quadratically many. On the other hand, this introduces slightly

more network latency. Which DQEP is better depends on the

cluster topology and data size.

6.2.2 Reshuffles
ResultTables can also be created with a specified partitioning key

to execute reshuffles. Using the same example query and schema,

if after applying filters table x is larger than or of similar size as

table y, the best plan would be to reshuffle y on a to match x:

(1) CREATE RESULT TABLE r1 PARTITION BY (y.a) AS

SELECT * FROM y WHERE y.c > 5 (on every partition)

(2) SELECT * FROM x JOIN REMOTE(r1(p)) WHERE x.b <

2 AND x.a = r1.a (on every partition)

(1) repartitions the rows of y from each local partition. Then (2) is

executed on each partition on the output side of the reshuffle,

reading the data corresponding to one partition of the repartitioned

data from across the cluster, the partition p which matches the

local partition of x, and executing the join.

If neither x nor y are sharded on a, then the best plan, if the two

tables are similarly sized after filters, may be to reshuffle both

sides. This can be done with a similar DQEP:

(1) CREATE RESULT TABLE r1 PARTITION BY (x.a) AS

SELECT * FROM x WHERE x.b < 2 (on every partition)

(2) CREATE RESULT TABLE r2 PARTITION BY (y.a) AS

SELECT * FROM y WHERE y.c > 5 (on every partition)

(3) SELECT * FROM REMOTE(r1(p)) JOIN REMOTE(r2(p))

WHERE r1.a = r2.a (on every partition)

7. EXPERIMENTS

7.1 TPC-H Benchmark
We used queries from the well-known TPC-H benchmark to

investigate the quality of query execution plans generated by the

query optimizer, by measuring the performance of queries

compared to another database and compared to queries generated

by MemSQL with some query optimizations disabled, as well as

the time required for query optimization.

We ran and compared MemSQL with another widely used state-

of-the-art commercial analytical database, which we will refer to

as “A” throughout this section. A is a column-oriented distributed

database. We created all tables as disk-backed columnstore tables

in MemSQL, matching A, which has only disk-backed column-

oriented tables. We used TPC-H at Scale Factor 100.

We ran MemSQL and A on Amazon EC2, on a cluster of 3 virtual

machines, each of the m3.2xlarge instance type, with 8 virtual

CPU cores (2.5GHz Intel Xeon E52670v2), 30 GB RAM, and

160 GB of SSD storage. The network bandwidth was 1 Gbps. The

MemSQL cluster configuration was a MemSQL leaf node on each

of the three machines, in addition to a MemSQL aggregator node

on one of the machines. 3 machines is a relatively small cluster

for MemSQL, but the choice of cluster configuration for this

experiment was due to limitations on running A.

It is very difficult to get all the tuning right for any database

system, and therefore the main aim for this experiment was to

provide a rough comparison of MemSQL and A, not to claim that

MemSQL is better than A for TPC-H. It is hard to compare

execution plans since every database has a different execution

engine.

We measured the latency of running each query alone. We used

this measurement for simplicity because the focus of this

experiment is on the quality of the query execution plans

generated by the query optimizer, not on other features of

MemSQL such as the technology enabling high-concurrency real-

time analytical workloads. Figure 3 shows the execution times (in

seconds) for the TPC-H queries. Queries q17 and q21 are omitted

because they are currently not efficiently runnable in this cluster

configuration of MemSQL on columnstore tables due to execution

limitations (on rowstore tables, they are optimized and executed

well).

Figure 3: Execution time for TPC-H queries compared to A

MemSQL is significantly faster than A on many of the TPC-H

queries (up to 10x faster), and somewhat slower than A on some

queries (up to 2.6x slower).

We also compared to MemSQL with most query rewrites

disabled. We did not disable some basic query rewrites such as

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22

L
a
te

n
c
y

 (
s)

Query

MemSQL A

predicate pushdown because that would harm performance too

much in an uninteresting way, since predicate pushdown is

responsible for moving filters below data movement operations,

for example. Without query rewrites, several queries are not

efficiently runnable at all (q2, q4, q18, q20, q22). Figure 4 shows

the execution times for the remaining queries. As can be seen,

query rewrites greatly improve performance on many queries. For

example, one rewrite which is critical for performance on several

queries is transforming scalar subqueries to joins.

Figure 4: Execution time for TPC-H queries with vs without

most query rewrites.

In addition, we measured the time taken to optimize the TPC-H

queries in MemSQL, shown in Figure 5. Every query was

optimized in less than 100 milliseconds, and most under 20ms.

The optimization time for a query is dependent on factors such as

the number of tables in the query and the rewrites that were

considered for the query. Since we did not have access to the

source code of A, there was no way to accurately measure the

query optimization times in A.

Figure 5: MemSQL query optimization time for TPC-H

queries.

7.2 Customer Workload
We now look at a real-world analytical workload from a

MemSQL customer. The example query described below is a

simplified and anonymized version of the key part of one query

from this workload. It features a join involving several tables that

form multiple star schemas. The joins do not feature any primary

or foreign keys and it was not possible to infer any table as fact or

dimension from the schema description. This query is

representative of several other queries in the workload, which

share the same join pattern.

SELECT …

FROM a11, a12, a13, a14, a15, a16, a17, a18, a19

WHERE a11.x = a12.y

 AND a11.y = a13.z

 AND a12.z = a14.x

 AND a11.a = a15.x

 AND a13.a = a16.a

 AND a13.b = a17.b

 AND a14.a = a18.a

 AND a15.a = a19.a

 AND a16.f = 1

 AND a18.c = 2

 AND a19.c = 3

 AND a17 IN (4,5,6)

This query runs 10x faster with a bushy join plan compared to a

left-deep join plan. In this case, the best join order was a bushy

join plan (a11, a12, (a13, a17, a16), (a14, a18), (a15, a19)).

Producing this join plan was not possible with our previous

algorithm in [12] since none of the joins involved primary keys. It

is worthwhile to note that the bushy join approach of [1] also

would not be able to detect the bushy nature of this query because

the seed tables a13, a14 and a15 had far smaller cardinality than

their satellite tables and therefore, could not have passed the

cardinality threshold of that method to be considered as a fact

table. With our new algorithm, we are able to detect bushy

patterns in many other queries in real customer workloads; a

speedup of 5-10x is seen for such customer queries.

8. RELATED WORK
In the recent past, several Massively Parallel Processing (MPP)

database systems such as SAP HANA [3], Teradata/Aster,

Netezza [15], SQL Server PDW [14], Oracle Exadata [20], Pivotal

GreenPlum [17], and Vertica [7] have gained popularity. A few

systems have implemented and published literature about query

optimization and planning for distributed database systems. We

briefly summarize some of them in this section.

SQL Server Parallel Data Warehouse (PDW) [14] uses a query

optimizer built on top of the Microsoft SQL Server optimizer. The

plan search space alternatives that are considered by the SQL

Server are sent over to PDW Data Movement Service and these

plans are then costed with distributed operator costs to choose a

distributed plan.

Orca [17] is the modular query optimizer architecture from

Pivotal that is designed for big data. It is top-down query

optimizer and can run outside the database system as a stand-

alone optimizer, thus providing the capability to support different

computing architectures like Hadoop etc. Although the paper

mentions about join ordering and rewrites, there is no explicit

mention of how rewrites are costed, or any technique that leads to

vast pruning of states in the dynamic programming search space.

Also, the intermediate language of communication, Data

eXchange Language (DXL) is based on XML while MemSQL

ResultTables interface is based on still-popular SQL.

Vertica [7] implements an industry strength optimizer for its

column storage data that is organized into projections. The

optimizer implements rewrites, cost-based join order selection,

optimized for star/snowflake schemas. Vertica’s V2Opt optimizer

improves on existing limitations (if join keys are not co-located)

by replicating the pertinent projections to improve

performance. Again, there is no explicit mention of how rewrites

0

20

40

60

80

100

120

1 3 5 6 7 8 9 10 11 12 13 14 15 16 19

L
a
te

n
c
y
 (

s)

Query

With rewrites Without rewrites

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

O
p

ti
m

iz
a

ti
o

n
 t

im
e
 (

m
s)

Query

are costed, join orders are generated, what pruning strategies are

used that would potentially overlap with the technical

contributions of this paper.

In the past, there have been several attempts to improve query

optimization time. Bruno et al. [2] propose several polynomial

heuristics that take into account selectivity, intermediate join size

etc. Some other previous work [4][18] also propose several

heuristics, but these techniques were designed before distributed

query processing became widespread and therefore do not take

data distribution into consideration. Another area where there

have been attempts to improve query optimization time is in

parallelizing the join enumeration process. Han et al. in [5]

propose several techniques to parallelize parts of the System-R

style enumerator and prototyped in PostgreSQL. Waas et al. in

[19] propose techniques to parallelize the enumeration process for

Cascade style enumerators. Heimel et al. [6] suggest using GPU

co-processor to speed up the query optimization process.

9. CONCLUSION
In this paper, we describe the architecture of the MemSQL Query

Optimizer, a modern optimizer for a distributed database designed

to optimize complex queries effectively and efficiently, in order to

produce very efficient distributed query execution plans with fast

optimization times. We discuss the problem of query rewrite

decisions in a distributed database, argue that the method in

existing systems of making these decisions oblivious of

distributed costs leads to poor plans, and describe how the

MemSQL query optimizer solves that problem. We describe

strategies which enable the Enumerator to quickly optimize joins

over an extremely large search space, including a new algorithm

to efficiently form bushy join plans. Finally, we demonstrate the

efficiency of our techniques over several queries from TPC-H

benchmark and a real customer workload.

10. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

feedback on this paper. We would also like to thank Ankur Goyal,

Wayne Hong, and Jason Israel for their contributions to this work.

Finally, we are grateful to the members of the MemSQL team for

their collaboration and their contributions to the MemSQL

database system.

11. REFERENCES
[1] R. Ahmed, R. Sen, M. Poess, and S. Chakkappen. Of

snowstorms and bushy trees. Proceedings of the VLDB

Endowment, 7(13):1452–1461, 2014.

[2] N. Bruno, C. Galindo-Legaria, and M. Joshi. Polynomial

heuristics for query optimization. In Data Engineering (ICDE),

2010 IEEE 26th International Conference on, pages 589–600.

IEEE, 2010.

[3] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and

W. Lehner. SAP HANA database: data management for modern

business applications. ACM SIGMOD Record, 40(4):45–51,

2012.

[4] L. Fegaras. A new heuristic for optimizing large queries. In

Database and Expert Systems Applications, pages 726–735.

Springer, 1998.

[5] W.-S. Han, W. Kwak, J. Lee, G. M. Lohman, and V. Markl.

Parallelizing query optimization. Proceedings of the VLDB

Endowment, 1(1):188–200, 2008.

[6] M. Heimel and V. Markl. A first step towards GPU-assisted

query optimization. ADMS@ VLDB, 2012:33–44, 2012.

[7] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver,

L. Doshi, and C. Bear. The Vertica analytic database: C-store 7

years later. Proceedings of the VLDB Endowment, 5(12):1790–

1801, 2012.

[8] G. Moerkotte and W. Scheufele. Constructing optimal bushy

processing trees for join queries is NP-hard. Technical reports,

96, 2004.

[9] R. O. Nambiar and M. Poess. The making of TPC-DS. In

Proceedings of the 32nd International Conference on Very

Large Data Bases, pages 1049–1058. VLDB Endowment, 2006.

[10] K. Ono and G. M. Lohman. Measuring the complexity of join

enumeration in query optimization. In VLDB, pages 314–325,

1990.

[11] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,

and T. G. Price. Access path selection in a relational database

management system. In Proceedings of the 1979 ACM SIGMOD

International Conference on Management of Data, pages 23–34.

ACM, 1979.

[12] R. Sen, J. Chen, and N. Jimsheleishvilli. Query optimization

time: The new bottleneck in real-time analytics. In Proceedings

of the 3rd VLDB Workshop on In-Memory Data Management

and Analytics, page 8. ACM, 2015.

[13] P. Seshadri, H. Pirahesh, and T. C. Leung. Complex query

decorrelation. In Data Engineering, 1996. Proceedings of the

Twelfth International Conference on, pages 450–458. IEEE,

1996.

[14] S. Shankar, R. Nehme, J. Aguilar-Saborit, A. Chung,

M. Elhemali, A. Halverson, E. Robinson, M. S. Subramanian,

D. DeWitt, and C. Galindo-Legaria. Query optimization in

Microsoft SQL Server PDW. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data,

pages 767–776. ACM, 2012.

[15] M. Singh and B. Leonhardi. Introduction to the IBM Netezza

warehouse appliance. In Proceedings of the 2011 Conference of

the Center for Advanced Studies on Collaborative Research,

pages 385–386. IBM Corp., 2011.

[16] A. Skidanov, A. Papitto, and A. Prout. A column store engine

for real-time streaming analytics. In Data Engineering (ICDE),

2016 IEEE 32nd International Conference on. IEEE, 2016.

[17] M. A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu,

E. Shen, G. C. Caragea, C. Garcia-Alvarado, F. Rahman,

M. Petropoulos, et al. Orca: a modular query optimizer

architecture for big data. In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data,

pages 337–348. ACM, 2014.

[18] A. Swami. Optimization of large join queries: combining

heuristics and combinatorial techniques. In ACM SIGMOD

Record, volume 18, pages 367–376. ACM, 1989.

[19] F. M. Waas and J. M. Hellerstein. Parallelizing extensible query

optimizers. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of Data, pages 871–

878. ACM, 2009.

[20] R. Weiss. A technical overview of the Oracle Exadata database

machine and exadata storage server. Oracle White Paper. Oracle

Corporation, Redwood Shores, 2012.

[21] M. Zukowski, M. Van de Wiel, and P. Boncz. Vectorwise: A

vectorized analytical DBMS. In Data Engineering (ICDE), 2012

IEEE 28th International Conference on, pages 1349–1350.

IEEE, 201

	1. Introduction
	1.1 Overview of MemSQL
	1.2 Query Optimization in MemSQL
	1.3 Contributions

	2. Overview of MemSQL query optimization
	2.1 DQEP Example
	2.2 Query Optimization Example

	3. Rewriter
	3.1 Heuristic and Cost-Based Rewrites
	3.2 Interleaving of Rewrites
	3.3 Costing Rewrites

	4. Bushy joins
	4.1 Bushy Plans via Query Rewrite
	4.2 Bushy Plan Heuristics

	5. Enumerator
	5.1 Search Space Analysis
	5.2 Distributed Costing
	5.3 Fast Enumeration

	6. Planner
	6.1 Remote Tables and Result Tables
	6.1.1 Remote Tables
	6.1.2 Result Tables

	6.2 Using Remote Tables and Result Tables in DQEPs
	6.2.1 Broadcasts
	6.2.2 Reshuffles

	7. Experiments
	7.1 TPC-H Benchmark
	7.2 Customer Workload

	8. Related work
	9. Conclusion
	10. Acknowledgements
	11. References

