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ABSTRACT 
Real-time analytics on massive datasets has become a very 

common need in many enterprises. These applications require not 

only rapid data ingest, but also quick answers to analytical queries 

operating on the latest data. MemSQL is a distributed SQL 

database designed to exploit memory-optimized, scale-out 

architecture to enable real-time transactional and analytical 

workloads which are fast, highly concurrent, and extremely 

scalable. Many analytical queries in MemSQL’s customer 

workloads are complex queries involving joins, aggregations, sub-

queries, etc. over star and snowflake schemas, often ad-hoc or 

produced interactively by business intelligence tools. These 

queries often require latencies of seconds or less, and therefore 

require the optimizer to not only produce a high quality 

distributed execution plan, but also produce it fast enough so that 

optimization time does not become a bottleneck. 

In this paper, we describe the architecture of the MemSQL 

Query Optimizer and the design choices and innovations which 

enable it quickly produce highly efficient execution plans for 

complex distributed queries. We discuss how query rewrite 

decisions oblivious of distribution cost can lead to poor 

distributed execution plans, and argue that to choose high-quality 

plans in a distributed database, the optimizer needs to be 

distribution-aware in choosing join plans, applying query rewrites, 

and costing plans. We discuss methods to make join enumeration 

faster and more effective, such as a rewrite-based approach to 

exploit bushy joins in queries involving multiple star schemas 

without sacrificing optimization time. We demonstrate the 

effectiveness of the MemSQL optimizer over queries from the 

TPC-H benchmark and a real customer workload. 

 

1. INTRODUCTION 
An increasing number of enterprises rely on real-time analytical 

pipelines for critical business decisions. These pipelines ingest 

data into a distributed storage system, and run complex analytic 

queries over the latest data. For many workloads it is critical that 

the analytical queries are optimized and executed very quickly so 

that results can be provided for interactive real-time decision 

making. The ability to store and query huge amounts of data by 

scaling storage and parallelizing execution across distributed 

clusters with many nodes enables dramatic performance 

improvements in execution times for analytical data workloads. 

Several other industrial database systems such as SAP HANA [3], 

Teradata/Aster, Netezza [15], SQL Server PDW [14], Oracle 

Exadata [20], Pivotal GreenPlum [17], Vertica [7], and 

VectorWise [21] have gained popularity and are designed to run 

analytical queries very fast. 

1.1 Overview of MemSQL 

MemSQL is a distributed memory-optimized SQL database which 

excels at mixed real-time analytical and transactional processing 

at scale. MemSQL can store data in two formats: an in-memory 

row-oriented store and a disk-backed column-oriented store. 

Tables can be created in either rowstore or columnstore format, 

and queries can involve any combination of both types of tables. 

MemSQL takes advantage of in-memory data storage with 

multiversion concurrency control and novel memory-optimized 

lock-free data structures to enable reading and writing data highly 

concurrently, allowing real-time analytics over an operational 

database. MemSQL's columnstore uses innovative architectural 

designs to enable real-time streaming analytical workloads with 

low-latency queries over tables with ongoing writes [16]. Along 

with its extremely scalable distributed architecture, these 

innovations enable MemSQL to achieve sub-second query 

latencies over large volumes of changing data. MemSQL is 

designed to scale on commodity hardware and does not require 

any special hardware or instruction set to demonstrate its raw 

power. 

MemSQL's distributed architecture is a shared-nothing 

architecture (nodes in the distributed system do not share memory, 

disk or CPU) with two tiers of nodes: scheduler nodes (called 

aggregator nodes) and execution nodes (called leaf nodes). 

Aggregator nodes serve as mediators between the client and the 

cluster, while leaf nodes provide the data storage and query 

processing backbone of the system. Users route queries to the 

aggregator nodes, where they are parsed, optimized, and planned. 

User data in MemSQL is distributed across the cluster in two 

ways, selected on a per-table basis. For Distributed tables, rows 

are hash-partitioned, or sharded, on a given set of columns, called 

the shard key, across the leaf nodes. For Reference tables, the 

table data is replicated across all nodes. Queries may involve any 

combination of such tables. 

In order to execute a query, the aggregator node converts the input 

user query into a distributed query execution plan (DQEP). The 

distributed query execution plan is a series of DQEP Steps, 

operations which are executed on nodes across the cluster which 

may include local computation and data movement via reading 

data from remote tables on other leaf nodes. MemSQL represents 
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these DQEP Steps using a SQL-like syntax and framework, using 

innovative SQL extensions called RemoteTables and 

ResultTables. These enable the MemSQL Query Optimizer to 

represent DQEPs using a SQL-like syntax and interface. We 

discuss RemoteTables and ResultTables in more detail later. 

Query plans are compiled to machine code and cached to expedite 

subsequent executions. Rather than cache the results of the query, 

MemSQL caches a compiled query plan to provide the most 

efficient execution path. The compiled query plans do not pre-

specify values for the parameters, allowing MemSQL to substitute 

values upon request, and enabling subsequent queries of the same 

structure to run quickly, even with different parameter values. 

1.2 Query Optimization in MemSQL 

The goal of the query optimizer is to find the best query execution 

plan for a given query by searching a wide space of potential 

execution paths and then selecting the plan with the least cost. 

This requires the optimizer to be rich in query rewrites and to be 

able to determine the best execution plan based on a cost model of 

query execution in the distributed database. Many of the queries 

in MemSQL’s customer workloads are complex queries from 

enterprise real-time analytical workloads, involving joins across 

star and snowflake schemas, sorting, grouping and aggregations, 

and nested sub-queries. These queries require powerful query 

optimization to find high-quality execution plans, but query 

optimization must also be fast enough so that optimization time 

does not slow down query runtimes too much. Many of the 

queries run in these workloads are ad-hoc and therefore require 

query optimization; and even non-ad-hoc queries can often require 

query optimization, for example due to significant changes in data 

statistics as new data is ingested. These queries often must be 

answered within latencies measured in seconds or less, despite 

being highly complex and resource intensive. 

Designing and developing a query optimizer for a distributed 

query processing system is an extremely challenging task. 

MemSQL is a high-performance database, built from the ground 

up with innovative engineering such as memory-optimized lock-

free skip-lists and a columnstore engine capable of running real-

time streaming analytics. Because of the unique characteristics of 

the MemSQL query execution engine, and because the real-time 

workloads MemSQL runs often mean that the time budget for 

optimizing a query is very limited, we decided to also build the 

query optimizer from scratch. Reusing any existing optimizer 

framework would not best address the goals and challenges in the 

MemSQL context, while it would also mean inheriting all the 

shortcomings of the framework and integration challenges. 

Despite the technical and engineering challenges, we developed a 

query optimizer rich in features and capable of producing high 

quality query execution plans across a variety of complex 

enterprise workloads. 

The MemSQL Query Optimizer is a modular component in the 

database engine. The optimizer framework is divided into three 

major modules: 

(1) Rewriter: The Rewriter applies SQL-to-SQL rewrites on the 

query. Depending on the characteristics of the query and the 

rewrite itself, the Rewriter decides whether to apply the 

rewrite using heuristics or cost; the cost being the distributed 

cost of running the query. The Rewriter intelligently applies 

certain rewrites in a top-down fashion while applying others 

in a bottom-up manner, and also interleaves rewrites that can 

mutually benefit from each other.  

(2) Enumerator: The Enumerator is a central component of the 

optimizer, which determines the distributed join order and 

data movement decisions as well as local join order and 

access path selection. It considers a wide search space of 

various execution alternatives and selects the best plan, based 

on the cost models of the database operations and the 

network data movement operations. The Enumerator is also 

invoked by the Rewriter to cost transformed queries when 

the Rewriter wants to perform a cost-based query rewrite.  

(3) Planner: The Planner converts the chosen logical execution 

plan to a sequence of distributed query and data movement 

operations. The Planner uses SQL extensions called 

RemoteTables and ResultTables to represent a series of Data 

Movement Operations and local SQL Operations using a 

SQL-like syntax and interface, making it easy to understand, 

flexible, and extensible. 

1.3 Contributions 

In this paper, we make the following important contributions: 

 We claim that if the cost-based query rewrite component is not 
aware of distribution cost, then the optimizer runs the risk of 
making poor decisions on query rewrites in a distributed 
setting. We solve the problem in the MemSQL query optimizer 
by calling the Enumerator within the Rewriter to cost rewritten 
queries based on its distributed-aware cost model. 

 We enhanced the Enumerator to enumerate very fast by 
extensively pruning the operator order search space. We 
implemented new heuristics that are distribution aware and use 
them to prune out states. 

 We propose a new algorithm that analyzes the join graph and 
discovers bushy patterns; i.e. it identifies parts of the join graph 
that could be advantageous to run as bushy joins and applies 
them as a query rewrite mechanism. 

The rest of the paper is organized as follows. Section 2 provides 

an overview of MemSQL query optimization and the structure of 

DQEPs. In Section 3, we deep dive into the details of the 

Rewriter. Section 4 introduces a new algorithm to efficiently 

discover bushy join patterns. Section 5 provides more insights into 

the Enumerator, and Section 6 describes the Planner. We describe 

our experimental results in Section 7. In Section 8, we briefly 

summarize related work done in the area of designing optimizers 

for distributed databases and also related work on reducing 

optimization time. Finally, we conclude in Section 9. 

2. OVERVIEW OF MEMSQL QUERY 

OPTIMIZATION 
When a user query is sent to MemSQL, the query is parsed to 

form an operator tree. The operator tree is the input to the query 

optimizer and it goes through the following steps: 

 The Rewriter analyzes the operator tree and applies the 

relevant query rewrites to the operator tree. If a particular 

rewrite is beneficial, it will apply it and change the operator 

tree to reflect the rewritten query. If a rewrite needs to be cost-



based, it will cost the original operator tree and the rewritten 

operator tree and will pick the tree that has a lower cost. 

 The operator tree is then sent to the Enumerator. The 

Enumerator uses a search space exploration algorithm with 

pruning. It takes into account the table statistics and the cost of 

the distributed operations such as broadcasting and 

partitioning to generate the best join order for the input query. 

The output of the enumerator is an operator tree where the tree 

nodes are annotated with directives for the Planner.  

 The Planner consumes the annotated operator tree that is 

produced by the Enumerator and generates the distributed 

query execution plan (DQEP), consisting of a series of DQEP 

Steps, SQL-like steps that can be sent as queries over the 

network to be executed on nodes across the cluster. The 

DQEP Steps are executed simultaneously on the leaves, 

streaming data whenever possible. Each step runs in parallel 

on all partitions of the database. 

2.1 DQEP Example 

Using the well-known TPC-H schema as an example, let us 

assume that the customer table is a distributed table that has a 

shard key on c_custkey and the orders table is also a distributed 

that has a shard key on o_orderkey. The query is a simple join 

between the two tables with a filter on the orders table. 

SELECT c_custkey, o_orderdate 

FROM orders, customer 

WHERE o_custkey = c_custkey  

  AND o_totalprice < 1000; 

The query above is a simple join and filter query and hence, the 

Rewriter will not be able to apply any query rewrites directly over 

this query and the operator tree corresponding to the original input 

query is fed to the Enumerator.  It can be seen that the shard keys 

of the tables do not exactly match with the join keys (orders is not 

sharded on o_custkey), and therefore, there needs to be a data 

movement operation in order to perform the join. The Enumerator 

will pick a plan based on the statistics of the table, number of 

nodes in the cluster, etc. One possible plan choice is to repartition 

orders on o_custkey to match customer sharded on c_custkey. The 

Planner converts this logical plan choice into an execution plan 

consisting of the following DQEP Steps: 

(1) CREATE RESULT TABLE r0 

      PARTITION BY (o_custkey) 

    AS 

      SELECT orders.o_orderdate as o_orderdate, 

             orders.o_custkey as o_custkey 

      FROM   orders 

      WHERE  orders.o_totalprices < 1000; 

 

(2) SELECT customer.c_custkey as c_custkey, 

           r0.o_orderdate as o_orderdate 

    FROM   REMOTE(r0(p)) JOIN customer 

    WHERE  r0.o_custkey = customer.c_custkey 

In this DQEP, there are two SQL-like statements which are 

executed using our ResultTable and RemoteTable SQL 

extensions. The first of these steps operates locally on each 

partition of the orders table, filtering and then partitioning the data 

on the join column, o_custkey, and streaming the result into the 

ResultTable r0. It can be seen that the Planner is able to push the 

predicate associated with the orders table down into the first 

DQEP step, to be executed before the data is moved. 

The second statement in the DQEP draws from a distributed table, 

indicated by the REMOTE keyword. This is the part of the DQEP 

that moves the data prepared in the first step across the network. 

Each partition reads the partitions of r0 which match the local 

partition of customer. Then, the join between the result of the 

previous step and the customer table is performed across all 

partitions. Every leaf node returns its result set to the aggregator 

node, which is responsible for combining and merging the result 

sets as needed and delivering them back to the client application. 

2.2 Query Optimization Example 
In this section, we illustrate the steps in the optimization and 

planning process for an example query. TPC-H Query 17 is an 

interesting example in that it shows interesting aspects of all three 

components of the optimizer. In this example, lineitem and part 

are distributed rowstore tables hash-partitioned on l_orderkey and 

p_partkey, respectively. The query is: 

SELECT sum(l_extendedprice) / 7.0 as avg_yearly 

FROM   lineitem, 

       part 

WHERE  p_partkey = l_partkey 

   AND p_brand = 'Brand#43' 

   AND p_container = 'LG PACK' 

   AND l_quantity < ( 

      SELECT 0.2 * avg(l_quantity) 

      FROM   lineitem 

      WHERE  l_partkey = p_partkey) 

Rewriter:  The Rewriter applies all the query rewrites and comes 

up with the following rewritten query, in which the scalar 

subquery has been converted to a join, and we have pushed the 

join with part down into the subquery, past the group by. This is 

beneficial because it enables more flexible join plan and DQEP. 

There is no way to efficiently execute the original query without 

transforming it, because the correlating condition of the subselect 

does not match the shard key of lineitem. Therefore, evaluating 

the correlated subselect would require doing a remote query for 

each row of part, which is obviously not performant, or first 

repartitioning lineitem on l_partkey, which is expensive because 

lineitem is large. In contrast, the transformed query can be 

executed efficiently by starting with part, which has a selective 

filter, and seeking into lineitem for the joins, as determined by the 

Enumerator. 

SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly 

FROM   lineitem, 

    ( 

        SELECT 0.2 * Avg(l_quantity) AS s_avg, 

               l_partkey AS s_partkey 

        FROM   lineitem, 

               part 

        WHERE  p_brand = 'Brand#43' 

           AND p_container = 'LG PACK' 

           AND p_partkey = l_partkey 

        GROUP  BY l_partkey 

    ) sub 

WHERE  s_partkey = l_partkey 

   AND l_quantity < s_avg 

Enumerator: The Enumerator chooses the cheapest join plan and 

annotates each join with data movement operations and type. The 

best plan is to broadcast the filtered rows from part and from sub, 

because the best alternative would involve reshuffling the entire 

lineitem table, which is far larger and thus more expensive. The 

query plan, with some simplifications, is: 



Project [s2 / 7.0 AS avg_yearly] 

Aggregate [SUM(1) AS s2] 

Gather partitions:all 

Aggregate [SUM(lineitem_1.l_extendedprice) AS s1] 

Filter [lineitem_1.l_quantity < s_avg] 

NestedLoopJoin 

|---IndexRangeScan lineitem AS lineitem_1, 

|   KEY (l_partkey) scan:[l_partkey = p_partkey] 

Broadcast 

HashGroupBy [AVG(l_quantity) AS s_avg] 

            groups:[l_partkey] 

NestedLoopJoin 

|---IndexRangeScan lineitem, 

|   KEY (l_partkey) scan:[l_partkey = p_partkey] 

Broadcast 

Filter [p_container = 'LG PACK' AND 

        p_brand = 'Brand#43'] 

TableScan part, PRIMARY KEY (p_partkey) 

Planner: The planner creates the DQEP according to the chosen 

query plan, consisting of a series of SQL statements with 

ResultTables and RemoteTables. Playing to the strengths of 

ResultTables, the entire query can be streamed since there are no 

pipeline-blocking operators. The group-by can also be streamed 

by taking advantage of the existing index on the p_partkey 

column from the part table. For clarity, we show a simplified 

DQEP, which omits the optimizations for broadcasts described in 

Section 6.2.1. 

CREATE RESULT TABLE r0 AS 

SELECT p_partkey 

FROM   part 

WHERE  p_brand = 'Brand#43' 

AND p_container = 'LG PACK'; 

 

CREATE RESULT TABLE r1 AS 

SELECT 0.2 * Avg(l_quantity) AS s_avg, 

       l_partkey as s_partkey 

FROM   REMOTE(r0), 

       lineitem 

WHERE  p_partkey = l_partkey 

GROUP  BY l_partkey; 

 

SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly 

FROM   REMOTE(r1), 

       lineitem 

WHERE  p_partkey = s_partkey 

   AND l_quantity < s_avg 

3. REWRITER 
The MemSQL query optimizer considers a wide variety of query 

rewrites, which convert a given SQL query to another 

semantically equivalent SQL query, which may correspond to a 

better performing plan. The Rewriter locates opportunities to 

apply a query transformation, decides based on heuristics or cost 

estimates whether the rewrite is beneficial, and if so applies the 

transformation to yield a new query operator tree. 

3.1 Heuristic and Cost-Based Rewrites 

A very simple example of a query transformation performed by 

the Rewriter is the Column Elimination transformation, which 

removes any projection columns that are never used, thus saving 

on computation, I/O, and network resources. This transformation 

is always beneficial, so the Rewriter applies the transformation 

whenever semantically valid. On the other hand, the Group-By 

Pushdown transformation, which modifies a query by reordering a 

group by before a join to evaluate the group by earlier, may or 

may not be advantageous depending on the sizes of the joins and 

the cardinality of the group by, so deciding whether to apply this 

transformation requires making cost estimates. 

We also make use of heuristics in many rewrite decisions. For 

example, Sub-Query Merging generally merges subselects 

whenever possible. However, when very large numbers of tables 

are being joined together under a number of simple views, 

merging all the subselects would result in a single large join of all 

these tables, which could be expensive for the Enumerator to 

effectively optimize. Merging these subselects discards 

information about the structure of the join graph, which may be 

helpful for optimizing the join even though it carries no additional 

semantic information. For example, in a snowstorm query, which 

includes multiple large fact tables and their associated dimension 

tables, the input query may contain views corresponding to joins 

of particular fact tables with their associated dimension tables, 

which can be efficiently evaluated and then joined together in a 

bushy join plan. We can use heuristics to detect this type of 

situation and avoid merging all the views in such cases. Of course, 

this restricts the space of possible join orders we can consider, 

which is only acceptable when we expect the join tree structure 

represented by the subselects to roughly correspond to the optimal 

join tree. In these situations, we can find a close-to-optimal join 

tree without needing to pay the high cost of join enumeration over 

the full, large set of tables including searching for bushy joins. 

3.2 Interleaving of Rewrites 

The Rewriter applies many query rewrites, many of which have 

important interactions with each other, so we must order the 

transformations intelligently, and in some cases interleave them. 

For example, consider Outer Join to Inner Join conversion, which 

detects outer joins that can be converted to inner joins because a 

predicate later in the query rejects NULLs of the outer table, and 

Predicate Pushdown, which finds predicates on a derived table 

which can be pushed down into the sub-select. Pushing a 

predicate down may enable Outer Join to Inner Join conversion if 

that predicate rejects NULLs of the outer table. However, Outer 

Join to Inner Join conversion may also enable Predicate 

Pushdown because a predicate in the ON condition of a left outer 

join can now potentially be pushed inside the right table, for 

example. Therefore, to transform the query as much as possible, 

we interleave the two rewrites: going top-down over each select 

block, we first apply Outer Join to Inner Join conversion, and 

then Predicate Pushdown, before processing any subselects. 

On the other hand, some rewrites such as the bushy join rewrite 

discussed later are done bottom-up, because they are cost-based 

and their cost can be affected by the rewrites chosen and plans 

generated for subselects in the subtree. 

3.3 Costing Rewrites 

We can estimate the cost of a candidate query transformation by 

calling the Enumerator, to see how the transformation affects the 

potential execution plans of the query tree, including join orders 

and group-by execution methods of any affected select blocks. 

Note that the Enumerator only needs to re-cost those select blocks 

which are changed, as we can reuse the saved costing annotations 

for any unchanged select blocks. 

It is important that the Enumerator determines the best execution 

plan taking into account data distribution, including when called 



by the Rewriter for the purposes of cost-based rewrites, because 

many query rewrites can potentially alter the distributed plan, 

including by affecting which operators like joins and groupings 

can be co-located, and which and how much data needs to be sent 

across the network. If the Rewriter makes a decision on whether 

to apply a rewrite based on a model that is not aware of 

distribution cost, the optimizer can potentially chose inefficient 

distributed plans. 

Let’s consider a relatively simple example to illustrate the point. 

Let us consider two tables T1 (a, b) and T2 (a, b) which are 

sharded on the columns T1.b and T2.a, respectively, and with a 

unique key on column a for T2: 

CREATE TABLE T1 (a int, b int, shard key (b)) 

CREATE TABLE T2 (a int, b int, shard key (a),  

                 unique key (a)) 

Consider the following query Q1:  

Q1: SELECT sum(T1.b) AS s FROM T1, T2  

      WHERE T1.a = T2.a  

      GROUP BY T1.a, T1.b 

This query can be rewritten to with the Group-By Pushdown 

transformation, which reorders the group-by before the join, as 

shown in the transformed query Q2:  

Q2: SELECT V.s from T2,   

      (SELECT a,  

              sum(b) as s 

        FROM T1 

        GROUP BY T1.a, T1.b 

      ) V 

      WHERE V.a = T2.a; 

Let 𝑅1 = 200,000 be the rowcount of T1 and 𝑅2 = 50,000 be the 

rowcount of T2. Let 𝑆𝐺 =
1

4
 be the fraction of rows of T1 left after 

grouping on (T1.a, T1.b), i.e. 𝑅1𝑆𝐺 = 50,000 is the number of 

distinct tuples of (T1.a, T1.b). Let 𝑆𝐽 =
1

10
 be the fraction of rows 

of T1 left after the join between T1.a and T2.a (note that each 

matched row of T1 produces only one row in the join since T2.a is 

a unique key). Assume the selectivity of the join is independent of 

the grouping, i.e. any given row has a probability 𝑆𝐽 of matching a 

row of T2 in the join. So the number of rows after joining T1 and 

T2 on T1.a = T2.a is 𝑅1𝑆𝐽 = 20,000, and the number of rows 

after both the join and the group-by of Q1 is 𝑅1𝑆𝐽𝑆𝐺 = 5,000. 

Assume seeking into the unique key on T2.a has a lookup cost of 

𝐶𝐽 = 1 units, and the group-by is executed using a hash table with 

an average cost of 𝐶𝐺 = 1 units per row. Then the costs of the 

query execution plans for Q1 without the Group-By Pushdown 

transformation, and Q2 with the transformation, without taking 

distribution into account (i.e. assuming the entire query is 

executed locally) are: 

𝐶𝑜𝑠𝑡𝑄1 = 𝑅1𝐶𝐽 + 𝑅1𝑆𝐽𝐶𝐺 = 200,000𝐶𝐽 + 20,000𝐶𝐺 = 220,000 

𝐶𝑜𝑠𝑡𝑄2 = 𝑅1𝐶𝐺 + 𝑅1𝑆𝐺𝐶𝐽 = 200,000𝐶𝐺 + 50,000𝐶𝐽 = 250,000 

For these example values of 𝐶𝐺 and 𝐶𝐽 as well as many other 

plausible values, 𝐶𝑜𝑠𝑡𝑄1 < 𝐶𝑜𝑠𝑡𝑄2. Therefore, in the context of a 

non-distributed query or a cost model that does not take 

distribution into account, the rewrite would be considered 

disadvantageous and we would execute the plan Q1. 

However, if we want to run the query in a distributed setting, we 

need to move data from at least one of the tables to execute the 

join. Since T2 is sharded on T2.a, but T1 is not sharded on T1.a, 

we can best compute this join by reshuffling T1 or broadcasting 

T2, depending on their sizes. Assuming the size of the cluster is 

large enough, e.g. 10 nodes, and given that T2 is not much smaller 

than T1, reshuffling T1 on T1.a is a cheaper plan than 

broadcasting T2 for the join. 

The group-by can be executed after the join in plan Q1 without 

any further data movement, since the result of the join is 

partitioned on T1.a, so all rows of each group are located on the 

same partition. The group-by can also be executed before the join 

in plan Q2 without any data movement, because T1 is sharded on 

T1.b, so all groups are also located on the same partition. 

In the distributed setting, we would incur an additional cost of 

shuffling all rows of T1 for plan Q1. For plan Q2, the plan would 

be to first execute the group-by locally on each partition, reshuffle 

the result, and finally join against T2, so only  𝑇1𝑆𝐺  rows must be 

reshuffled since the group-by reduces the rowset. 

The distributed query execution plans in MemSQL are: 

Q1: 

Gather partitions:all 

Project [r0.s] 

NestedLoopJoin 

|---IndexSeek T2, UNIQUE KEY (a) scan:[a = r0.a] 

Repartition AS r0 shard_key:[a] 

HashGroupBy [SUM(T1.b) AS s] groups:[T1.a, T1.b] 

TableScan T1 

 

Q2: 

Gather partitions:all 

Project [r0.s] 

HashGroupBy [SUM(r0.b) AS s] groups:[r0.a, r0.b] 

NestedLoopJoin 

|---IndexSeek T2, UNIQUE KEY (a) scan:[a = r0.a] 

Repartition AS r0 shard_key:[a] 

TableScan T1 

Assuming the average cost of executing a reshuffle, which 

includes e.g. network and hash evaluation costs, is 𝐶𝑅 = 3 units 

per row, the costs are: 

𝐶𝑜𝑠𝑡𝑄1 = 𝑅1𝐶𝑅 + 𝑅1𝐶𝐽 + 𝑅1𝑆𝐽𝐶𝐺  

= 200,000 (𝐶𝑅 + 𝐶𝐽) + 20,000 𝐶𝐺

= 620,000 

𝐶𝑜𝑠𝑡𝑄2 = 𝑅1𝐶𝐺 + 𝑅1𝑆𝐺𝐶𝑅 + 𝑅1𝑆𝐺𝐶𝐽

= 200,000𝐶𝐺 + 50,000(𝐶𝑅 + 𝐶𝐽)

= 400,000 

For these example parameter values, 𝐶𝑜𝑠𝑡𝑄1 > 𝐶𝑜𝑠𝑡𝑄2 because 

the reshuffle significantly impacts the cost of the plans. This is 

especially likely to be the case in clusters with slower network 

where network costs may often dominate the cost of a query. In an 

Amazon EC cluster, we found that plan Q2 runs around 2x faster 

than Q1 in MemSQL. A rewrite decision based on a distribution-

oblivious cost model would have incorrectly chosen Q1. 

The example query Q1 used is a very simple query involving a 

join and a group-by. Many more complex queries that undergo a 

series of mutually interacting and interleaved query rewrites 

would also require the Enumerator to cost plans taking data 

distribution into account. 



Comparison to PDW: Microsoft PDW’s Query Optimizer [14] 

performs distributed costing for join order enumeration, but the 

query rewrites are all applied in the single-node SQL Server 

optimizer. The SQL Server optimizer (in a single SQL Server 

instance) uses the “shell database” that contains the statistical 

information of the tables, performs the cost-based rewrites and 

generates the space of execution alternatives (called MEMO) that 

PDW consumes. Without distributed costing inside the SQL 

Server optimizer, PDW will produce inefficient distributed 

execution plans where the query rewrites affect the distributed 

cost significantly. 

4. BUSHY JOINS 
As discussed in the literature [8][10], searching all possible join 

plans, including bushy join plans, as part of the join enumeration 

makes the problem of finding the optimal join permutation 

extremely costly and time-consuming. As a result, many database 

systems do not consider bushy joins, limiting their search to left-

deep or right-deep join trees. However, for many query shapes, 

such as shapes involving multiple star or snowflake schemas, 

bushy join plans are critical for achieving good execution 

performance, with massive speedups compared to the best non-

bushy join plan. 

Our strategy for finding good join plans, which may be bushy in 

nature, without sacrificing optimization time by paying the cost of 

searching all bushy join plans, is a heuristic-based approach which 

considers only promising  bushy joins instead of all possible 

cases. We look for common query shapes that benefit from bushy 

plans and introduce bushiness via the framework of a query 

rewrite. In our previous work [12], we demonstrated the 

effectiveness of this general approach. A direct advantage of 

generating bushy plans in this way is that we would only consider 

bushy plans when there is a potential benefit as determined by the 

heuristics, which allows narrow and targeted exploration of the 

bushy plan space. As we started analyzing more complex query 

workloads from real world customers, we realized that while 

generating bushy join plans via query rewrites was a good idea, 

the heuristics that we used to generate the candidate plans and the 

rewrite method itself need to be refined and cover more generic 

cases. We will discuss our new method for finding bushy join 

plans which improves on the previous approach. 

4.1 Bushy Plans via Query Rewrite 
Even if the Enumerator considers only left-deep join trees, it is 

easy to generate a query execution plan that is bushy in nature.  

This can be done by creating a derived table using the query 

rewrite mechanism and using the derived table as the right side of 

the join. The Enumerator works as usual; it optimizes the derived 

table like any other table in the join.  Once a new derived table is 

introduced as part of the query rewrite, the Rewriter calls the 

Enumerator to cost the rewritten query, and then based on the 

cost, determines whether to retain the newly introduced subselect. 

The Bushy Plan rewrite clearly must make cost-based decisions 

because comparing two bushy plan options involves considering 

join execution methods, distribution methods, etc. However, the 

choices of which plans to consider is heuristic-based to enable this 

approach to efficiently explore candidate plans which are likely to 

be beneficial. 

4.2 Bushy Plan Heuristics 
Using query rewrite mechanism, it is possible to consider 

promising bushy joins by forming one or more subselects, each of 

which has an independent left-deep join tree. The Enumerator 

chooses the best left-deep join tree within each select block. By 

placing a derived table on the right side of a join, we form a bushy 

join tree. For example, consider a snowstorm shape query, where 

there are multiple large fact tables, each joined against its 

associated dimension table(s), which have single-table filters. The 

best left-deep join plan generally must join each fact table after 

the first by either joining it before its associated dimension tables, 

when its size has not yet been reduced by their filters, or by 

joining the dimension table first, an expensive Cartesian product 

join. We may benefit greatly from a bushy join plan where we 

join the fact table with its dimension tables, benefiting from their 

filters, before joining it to the previous tables. 

Our algorithm to generate bushy join plans traverses the join 

graph and looks at the graph connections to determine whether 

any such bushy subselects are possible and what tables may be 

part of those subselects. For every such subselect that could be 

potentially formed, it calls the Enumerator to determine the cost in 

order to decide which candidate option is better. The basic 

algorithm is as follows: 

1. Collect the set of tables in the join and build a graph of the 

tables in which each table is a vertex and each join predicate 

between a pair of tables corresponds to an edge between their 

vertices. 

2. Identify candidate satellite tables, which are tables with at 

least one selective predicate on them, such as a predicate of 

the form column = constant or column IN 

(constant,…).  

3. Out of the list of candidate satellite tables, identify the 

satellite tables, which are the tables connected to only other 

table in the graph (although possibly with multiple join 

predicates). 

4. Identify seed tables, which are tables that are connected to at 

least two distinct tables, at least one of which is a satellite 

table. (Observe that no satellite table can be adjacent to more 

than one seed table because of the requirement that satellite 

tables are connected to only one table.) 

5. For each seed table: 

a) Use the costing mechanism to compute the cost 𝐶1 of 

the current plan.  

b) Create a derived table containing the seed table joined 

to its adjacent satellite tables. Note that some SQL 

operators may prevent some satellite tables from being 

moved inside the subselect, in which case move as 

many as possible. 

c) Apply the Predicate Pushdown rewrite followed by the 

Column Elimination rewrite to ensure that any predicate 

in the outer select which can be evaluated in the inner 

select is moved inside and that no columns are provided 

by the inner select which are not needed in the outer 

select. 

d) Compute the new cost 𝐶2 of the modified plan. If 

𝐶1 < 𝐶2, discard the changes made in steps (b) and (c), 

and otherwise keep them. 

Our strategy is very generic and does not depend on table 

cardinalities and/or selectivities to identify possible bushy 

combinations. In a snowstorm-type query, this will find fact 



tables, which are often joined to the primary key of their 

associated dimension tables where at least one of the dimension 

tables has a single-table filter. This is exactly the type of situation 

where we most benefit from generating a bushy join plan. The 

Rewriter will generate different candidate bushy join trees using 

these seed tables (one bushy view per seed table) and it will use 

the Enumerator to cost each combination and then (based on cost) 

decide which ones to retain. As an example, consider TPC-DS [9] 

query 25: 

SELECT … 

FROM   store_sales ss, 

       store_returns sr, 

       catalog_sales cs, 

       date_dim d1, 

       date_dim d2, 

       date_dim d3, 

       store s, 

       item i 

WHERE  d1.d_moy = 4 

       AND d1.d_year = 2000 

       AND d1.d_date_sk = ss_sold_date_sk 

       AND i_item_sk = ss_item_sk 

       AND s_store_sk = ss_store_sk 

       AND ss_customer_sk = sr_customer_sk 

       AND ss_item_sk = sr_item_sk 

       AND ss_ticket_number = sr_ticket_number 

       AND sr_returned_date_sk = d2.d_date_sk 

       AND d2.d_moy BETWEEN 4 AND 10 

       AND d2.d_year = 2000 

       AND sr_customer_sk = cs_bill_customer_sk 

       AND sr_item_sk = cs_item_sk 

       AND cs_sold_date_sk = d3.d_date_sk 

       AND d3.d_moy BETWEEN 4 AND 10 

       AND d3.d_year = 2000 

GROUP BY … 

ORDER BY … 

We will focus on the join and ignore the group-by, aggregations, 

and order-by in our discussion of this example. 

The join graph is shown in Figure 1. The tables with filters are 

colored green. There are three fact tables (store_sales, 

store_returns, and catalog_sales), each joined against one 

dimension table with a filter (date_dim). All of the joins are on a 

primary key or another highly selective key. 

 

Figure 1: Join graph for TPC-DS q25. 

In a distributed setting, the best left-deep join plan chosen by the 

Enumerator is (d1, ss, sr, d2, s, i, d3, cs), shown in Figure 2a. All 

of these joins have selective join conditions except for one: the 

Join node colored red, when we join d3, is a Cartesian product 

join, because d3 only has join predicates with cs. This is 

expensive, but given the restriction to left-deep join trees it is the 

better alternative compared to first joining cs without having any 

of the filtering that comes from the single-table filters on d3. 

 

       (a) Left-deep join                           (b) Bushy join 

Figure 2: Join trees for TPC-DS q25.  

Our algorithm works as follows. We first build the join graph and 

then identify the candidate satellite tables, which in this case are 

{d1, d2, d3} since each of them has one selective predicate. We 

then identify the satellite tables, which are connected to more than 

one table in the join graph; in this example, all the three tables are 

connected with only table and so the satellite tables are {d1, d2, 

d3}. We now identity the set of seed tables, the tables connected 

to at least two distinct tables, one of which must be a satellite 

table. Our seed tables are ss (connected to satellite d1 and sr), sr 

(connected to satellite d2 and ss), and cs (connected to satellite d3 

and sr). 

The Rewriter tries to cost each combination and uses the 

Enumerator to cost every rewritten combination. The final bushy 

join order that is chosen is (d1, ss, sr, d2, s, i, (d3, cs)), shown in 

Figure 2b. It can be seen that out of all candidate seed tables, 

bushiness was introduced only for cs and its satellite tables. We 

also consider ss and sr as seed tables, but these bushy views do 

not improve the cost of the query and are rejected. The bushy join 

plan runs 10.1 times as fast as the left-deep join plan. The bushy 

join plan is represented with a derived table as follows: 

SELECT … 

FROM   store_sales, 

       store_returns, 

       date_dim d1, 

       date_dim d2, 

       store, 

       item, 

       (SELECT * 

        FROM   catalog_sales, 

               date_dim d3 

        WHERE  cs_sold_date_sk = d3.d_date_sk 

               AND d3.d_moy BETWEEN 4 AND 10 

               AND d3.d_year = 2000) sub 

WHERE  d1.d_moy = 4 

       AND d1.d_year = 2000 

       AND d1.d_date_sk = ss_sold_date_sk 

       AND i_item_sk = ss_item_sk 

       AND s_store_sk = ss_store_sk 

       AND ss_customer_sk = sr_customer_sk 

       AND ss_item_sk = sr_item_sk 

       AND ss_ticket_number = sr_ticket_number 

       AND sr_returned_date_sk = d2.d_date_sk 

       AND d2.d_moy BETWEEN 4 AND 10 

       AND d2.d_year = 2000 

       AND sr_customer_sk = cs_bill_customer_sk 

       AND sr_item_sk = cs_item_sk 



It is worthwhile to note here that the technique of using a query 

rewrite mechanism to generate bushy join plans is not new and 

has already been explored in [1]. However, the methods used to 

achieve the same in [1] and in our framework are totally different 

from each other. The mechanism in [1] identifies fact (large), 

dimension (small) and branch tables using table cardinalities, 

statistics and join conditions. It then uses a combination of such 

tables to form a view (sub-select). Instead, the MemSQL Rewriter 

does not do any categorization of tables based on cardinalities and 

statistics. It only traverses the join graph and only looks at number 

of connections in the graph to identity the set of seed tables. In 

[1], the fact table always has to have an effective (after applying 

filters) cardinality that is more than a minimum threshold. Our 

solution does not have any such restriction; in fact, we never look 

at cardinalities and it could easily happen that the effective 

cardinality of the seed table is less than that of the satellite table.  

Also in [1], each fact table needs a join edge with at least one 

other fact table; in our case, seed tables need not necessarily join 

with another seed table. These fundamental differences enable us 

to cover a lot of more generic cases that might benefit from bushy 

join plans. We will cover one such case from a real customer 

workload in our Experiments Section. 

5. ENUMERATOR 
The Enumerator is the backbone of the MemSQL Query 

optimizer. It is the component that connects the Rewriter and the 

Planner; the Rewriter feeds query operator trees into the 

Enumerator for the Enumerator to determine the execution plan, 

including distributed data movement decisions and join orders, 

and annotate the operator tree accordingly. The Rewriter is the 

component that does a lot of logical optimization leading to the 

Enumerator; which does the physical optimization of the query. 

The Enumerator needs to look at cost, table and network statistics, 

query characteristics etc. to perform the physical optimization. 

Just like any other industry-strength query optimizers, the 

Enumerator has a costing model and considers a wide search 

space of various execution alternatives to select the best join 

order. The Enumerator is built on the assumption that parallelizing 

the best serial plan is not good enough for distributed query 

processing.  [14] discusses this claim as well, and we also 

conducted our own set of experiments over benchmarks like TPC-

H and TPC-DS and several customer workloads to find illustrative 

examples of the need for join choices to be distribution aware and 

the need for the optimizer, including the enumeration algorithm, 

to take into account the cost of the data movement operations to 

come up with the best DQEP. A key focus of the Enumerator is on 

choosing high-quality distributed query plans, including taking 

advantage of co-located (bucketed) joins when possible and 

minimizing data distribution costs. It is also interesting to note 

that the Enumerator must handle physical optimization for queries 

involving columnstore and rowstore tables in any combination. 

This requires searching execution plans appropriate for both 

storage formats and modeling them in the cost model. 

5.1 Search Space Analysis 

The Enumerator optimizes the join plan within each select block, 

but does not consider optimizations involving moving joins 

between different select blocks, which is instead done by the 

Rewriter. The Enumerator processes the select blocks bottom-up, 

starting by optimizing the smallest expressions (subselects), and 

then using the annotation information to progressively optimize 

larger expressions (subselects that are parents of other sub-

selects). Eventually, the physical plan for the entire operator tree 

is determined when the enumerator is done with the outermost 

select block. Even though a bottom-up approach is used, a top-

down enumeration should still be applicable with the same set of 

pruning heuristics. As mentioned before, the set of possible plans 

is huge and the search space size increases by the introduction of 

data movement operations. To limit the combinatorial explosion, 

the Enumerator implements a bottom-up System-R [11] style 

dynamic programming based join order enumerator with 

interesting properties. System-R style optimizers have the notion 

of interesting orders to help take advantage of physical properties 

like sort order etc. The MemSQL Optimizer Enumerator employs 

an interesting property of sharding distribution, e.g. the set of 

columns by which data is sharded across the cluster. Interesting 

shard keys that can be considered are (1) predicate columns of 

equality joins and (2) grouping columns. In the dynamic 

programming, we keep track of the best cost for each candidate 

join set that yields data distributed on each interesting sharding. 

By examining plans that yield different sharding distributions, we 

are able to find plans that later take advantage of the sharding 

distribution. Even though they may be more expensive for an 

initial part of the join, they may end up cheaper by avoiding the 

need for a reshuffle or broadcast later. 

5.2 Distributed Costing 

The cost model for the distributed optimizer consists of the cost 

model for local SQL relational operations like joins, grouping etc. 

and the data movement operations. For distributed queries which 

require non-co-located joins because the shard keys of tables 

involved do not match the join keys, the data movement 

processing times are often a dominant component of the query 

execution time. The cost model for data movement operations 

assumes that every query runs in isolation; the hardware is 

homogenous across the cluster; and the data is uniformly 

distributed across all the nodes. These assumptions are not new 

and are discussed in [14]; they are clearly not ideal in all cases but 

are helpful simplifications which work well in most cases. 

Data Movement Operations: The data movement operations 

supported by the distributed query execution engine are:  

 Broadcast: Tuples are broadcasted from each leaf node to all 

other leaf nodes. 

 Partition (also called Reshuffle): Tuples are moved from each 

leaf node to a target leaf node based on a hash of a chosen set 

of distribution columns. 

Data Movement Operation Costs: The costs for data movement 

operations include the network and computational costs of 

sending data over the network, as well as other computational 

costs required for the operations such as hashing costs for 

reshuffles.  The cost is estimated as follows: 

 Broadcast: 𝑅 𝐷 

 Partition: 
1

𝑁
(𝑅 𝐷 + 𝑅 𝐻) 

where R is the number of rows which need to be moved, D is the 

average cost per row of moving data (which depends on the row 

size and network factors), N is the number of nodes, and H is the 

cost per row of evaluating hashes for partitioning. 



5.3 Fast Enumeration 

As mentioned earlier, in many real-time analytics workloads, 

queries need to finish execution within a few seconds or less than 

a second, and therefore require the optimizer to not only produce 

the best distributed execution plan but also produce it fast (with 

low query optimization latency) so that optimization time does not 

become too expensive a component of query latency. To cost 

query rewrite combinations, the Rewriter calls the Enumerator 

and this requires the enumeration to be very fast. This requires the 

Enumerator to use pruning techniques to filter our plans. In the 

world of distributed query optimization, any pruning technique 

that is employed needs to be aware of data distribution; a heuristic 

technique based on table cardinalities, schema and selectivities is 

not good enough. The MemSQL Enumerator uses several 

advanced pruning techniques to enumerate operator orders, thus 

making the process very fast. A discussion of those techniques is 

available in [12]. 

6. PLANNER 
The role of the planner is to convert the rewritten and enumerated 

query into a physical execution plan. The Planner converts the 

output of the Enumerator to a physical execution plan that can be 

distributed to all the nodes in a cluster.  It consumes the annotated 

operator tree that is produced by the Enumerator and generates the 

DQEP Steps that are required to execute the query.  DQEP Steps 

are SQL-like steps that can be sent as query text over the network. 

The DQEP Steps are executed simultaneously on the leaves, 

streaming data whenever possible. Each step runs in parallel on all 

partitions of the database. 

6.1 Remote Tables and Result Tables 

In MemSQL, each step of a DQEP may consist of data movement 

and local computation.  Because SQL is both easy to reason about 

and already supported in the engine, all communication between 

nodes in a MemSQL cluster is done via the SQL interface.  This 

transparently enables features such as node-level optimization and 

plan extensibility.  MemSQL implements and employs two 

important SQL extensions to support data movement and node-

level computation. 

6.1.1 Remote Tables 
In a simple query, the only inter-node communication required is 

from the leaf nodes to the aggregator node.  Wherever possible, 

filters and grouping expressions are pushed down into the leaf 

queries to increase parallelism.  When more complex queries are 

considered, data movement between leaf nodes is required.  The 

SQL extension RemoteTables allows leaf nodes to query all 

partitions in the same way an aggregator would. Consider the 

following query: 

SELECT facts.id, facts.value  

FROM   REMOTE(facts) as facts 

WHERE  facts.value > 4 

This query can run on any leaf in the MemSQL cluster.  The 

REMOTE keyword indicates to the engine that the relation is 

comprised of tuples from all partitions of the facts table, rather 

than only the local partition. In the interest of exposing an explicit 

syntax for the planner to use, the filter is not delegated to each 

other partition as it would have been in an aggregator query.  For 

the planner to indicate precisely when particular operations should 

be computed, MemSQL employs an extension called 

ResultTables. 

6.1.2 Result Tables 
Using RemoteTables alone would be enough to evaluate any 

relational expression on a cluster of nodes, but it has certain 

drawbacks.  In a fully distributed query, each partition of the 

database will need to query a RemoteTable.  However, with each 

partition querying all other partitions, a lot of work will be 

repeated quadratically.  Even table scans can be expensive when 

repeated for each partition of the database.  To share 

computational work, MemSQL nodes can store local 

ResultTables.  A result table is a temporary result set, which stores 

one partition of a distributed intermediate result.  These tables are 

defined using a SQL SELECT statement, and are read-only after 

definition.  In this way, the planner can delegate work to the 

partitions with finer granularity.  In the example above, the 

planner could arrange for each partition to run the following query 

on each partition before computing the final select: 

CREATE RESULT TABLE facts_filtered 

AS SELECT facts.id, facts.value 

          FROM facts 

          WHERE facts.value > 4 

The RemoteTable can select from this new relation instead of the 

original base table to avoid running the filter on the receiving end. 

6.2 Using Remote Tables and Result Tables in 

DQEPs 
To fully represent a DQEP, the planner must lay out a series of 

data movement and computational steps in SQL.  In a MemSQL 

plan, this is accomplished by chaining these operations together 

within ResultTables. Each stage of the DQEP is represented by a 

compute step which optionally pulls rows from another stage of 

the execution, using ResultTables to represent intermediate result 

sets. In this way, complex data flow and computation can be 

expressed using only these SQL extensions. However, 

ResultTables need not be materialized as actual tables, and for 

some query execution plans they are simply an abstraction and the 

underlying execution can stream rows from the writer to the 

reader without writing to a physical table. 

6.2.1 Broadcasts 
Consider the example query 

SELECT * FROM x JOIN y WHERE x.a = y.a AND x.b < 2 

AND y.c > 5 

where table x is sharded on a but table y is not (if they are both 

sharded on a, then the optimizer would take advantage of that to 

do a colocated join). In this case, depending on the relative sizes 

of the tables after applying filters, the best plan may be to either 

broadcast x or reshuffle y to match the sharding of x. If table x is 

much smaller than table y after the relevant filters, the best plan 

would be to broadcast x after the filter. This can be executed with 

the following DQEP: 

(1) CREATE RESULT TABLE r1 AS SELECT * FROM x 

WHERE x.b < 2 (on every partition) 

(2) CREATE RESULT TABLE r2 AS SELECT * FROM 

REMOTE(r1) (on every node) 

(3) SELECT * FROM r2 JOIN y WHERE y.c > 5 AND r2.a 

= y.a (on every partition) 



(1) is executed on every partition, to apply the filter x.b < 2 

locally prior to the broadcast. Then (2) is executed on every leaf 

node to bring the filtered rows of x to every node. In this case, r2 

would be materialized into a temporary hashtable for the join with 

y in (3). (3) is executed on every leaf node, with results streamed 

across the network to the aggregator and then to the client. The 

use of r2 allows the broadcasted data to be brought to each leaf 

once, whereas if (3) read directly from REMOTE(r1), the query 

would produce the same results but every partition would 

separately read the broadcasted data from across the network and 

materialize the resulting table. 

The flexibility of the RemoteTables and ResultTables abstraction 

also easily enables various alternate execution methods for this 

broadcast. For example, another possible DQEP for this broadcast 

is: 

(1) CREATE RESULT TABLE r1 AS SELECT * FROM x 

WHERE x.b < 2 (on every partition) 

(2) CREATE RESULT TABLE r2 AS SELECT * FROM 

REMOTE(r1) (on a single node) 

(3) CREATE RESULT TABLE r3 AS SELECT * FROM 

REMOTE(r2) (on every node) 

(4) SELECT * FROM r3 JOIN y WHERE y.c > 5 AND r3.a 

= y.a (on every partition) 

Here, a single node reads the broadcasted rows from across the 

cluster, and then distributes them to all other nodes. This is the 

smallest example of a broadcast tree. Compared to the first plan, 

only linearly many connections are used across the cluster instead 

of quadratically many. On the other hand, this introduces slightly 

more network latency. Which DQEP is better depends on the 

cluster topology and data size. 

 

6.2.2 Reshuffles 
ResultTables can also be created with a specified partitioning key 

to execute reshuffles. Using the same example query and schema, 

if after applying filters table x is larger than or of similar size as 

table y, the best plan would be to reshuffle y on a to match x: 

(1) CREATE RESULT TABLE r1 PARTITION BY (y.a) AS 

SELECT * FROM y WHERE y.c > 5 (on every partition) 

(2) SELECT * FROM x JOIN REMOTE(r1(p)) WHERE x.b < 

2 AND x.a = r1.a (on every partition) 

(1) repartitions the rows of y from each local partition. Then (2) is 

executed on each partition on the output side of the reshuffle, 

reading the data corresponding to one partition of the repartitioned 

data from across the cluster, the partition p which matches the 

local partition of x, and executing the join. 

If neither x nor y are sharded on a, then the best plan, if the two 

tables are similarly sized after filters, may be to reshuffle both 

sides. This can be done with a similar DQEP: 

(1) CREATE RESULT TABLE r1 PARTITION BY (x.a) AS 

SELECT * FROM x WHERE x.b < 2 (on every partition) 

(2) CREATE RESULT TABLE r2 PARTITION BY (y.a) AS 

SELECT * FROM y WHERE y.c > 5 (on every partition) 

(3) SELECT * FROM REMOTE(r1(p)) JOIN REMOTE(r2(p)) 

WHERE r1.a = r2.a (on every partition) 

7. EXPERIMENTS 

7.1 TPC-H Benchmark 
We used queries from the well-known TPC-H benchmark to 

investigate the quality of query execution plans generated by the 

query optimizer, by measuring the performance of queries 

compared to another database and compared to queries generated 

by MemSQL with some query optimizations disabled, as well as 

the time required for query optimization. 

We ran and compared MemSQL with another widely used state-

of-the-art commercial analytical database, which we will refer to 

as “A” throughout this section. A is a column-oriented distributed 

database. We created all tables as disk-backed columnstore tables 

in MemSQL, matching A, which has only disk-backed column-

oriented tables. We used TPC-H at Scale Factor 100. 

We ran MemSQL and A on Amazon EC2, on a cluster of 3 virtual 

machines, each of the m3.2xlarge instance type, with 8 virtual 

CPU cores (2.5GHz Intel Xeon E52670v2), 30 GB RAM, and 

160 GB of SSD storage. The network bandwidth was 1 Gbps. The 

MemSQL cluster configuration was a MemSQL leaf node on each 

of the three machines, in addition to a MemSQL aggregator node 

on one of the machines. 3 machines is a relatively small cluster 

for MemSQL, but the choice of cluster configuration for this 

experiment was due to limitations on running A. 

It is very difficult to get all the tuning right for any database 

system, and therefore the main aim for this experiment was to 

provide a rough comparison of MemSQL and A, not to claim that 

MemSQL is better than A for TPC-H. It is hard to compare 

execution plans since every database has a different execution 

engine. 

We measured the latency of running each query alone. We used 

this measurement for simplicity because the focus of this 

experiment is on the quality of the query execution plans 

generated by the query optimizer, not on other features of 

MemSQL such as the technology enabling high-concurrency real-

time analytical workloads. Figure 3 shows the execution times (in 

seconds) for the TPC-H queries. Queries q17 and q21 are omitted 

because they are currently not efficiently runnable in this cluster 

configuration of MemSQL on columnstore tables due to execution 

limitations (on rowstore tables, they are optimized and executed 

well). 

 

 

Figure 3: Execution time for TPC-H queries compared to A 

MemSQL is significantly faster than A on many of the TPC-H 

queries (up to 10x faster), and somewhat slower than A on some 

queries (up to 2.6x slower). 

We also compared to MemSQL with most query rewrites 

disabled. We did not disable some basic query rewrites such as 
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predicate pushdown because that would harm performance too 

much in an uninteresting way, since predicate pushdown is 

responsible for moving filters below data movement operations, 

for example. Without query rewrites, several queries are not 

efficiently runnable at all (q2, q4, q18, q20, q22). Figure 4 shows 

the execution times for the remaining queries. As can be seen, 

query rewrites greatly improve performance on many queries. For 

example, one rewrite which is critical for performance on several 

queries is transforming scalar subqueries to joins. 

 

 

Figure 4: Execution time for TPC-H queries with vs without 

most query rewrites. 

In addition, we measured the time taken to optimize the TPC-H 

queries in MemSQL, shown in Figure 5. Every query was 

optimized in less than 100 milliseconds, and most under 20ms. 

The optimization time for a query is dependent on factors such as 

the number of tables in the query and the rewrites that were 

considered for the query.  Since we did not have access to the 

source code of A, there was no way to accurately measure the 

query optimization times in A. 

 

Figure 5: MemSQL query optimization time for TPC-H 

queries. 

7.2 Customer Workload 
We now look at a real-world analytical workload from a 

MemSQL customer. The example query described below is a 

simplified and anonymized version of the key part of one query 

from this workload. It features a join involving several tables that 

form multiple star schemas. The joins do not feature any primary 

or foreign keys and it was not possible to infer any table as fact or 

dimension from the schema description. This query is 

representative of several other queries in the workload, which 

share the same join pattern. 

SELECT … 

FROM a11, a12, a13, a14, a15, a16, a17, a18, a19 

WHERE a11.x = a12.y 

  AND a11.y = a13.z 

  AND a12.z = a14.x  

  AND a11.a = a15.x 

  AND a13.a = a16.a  

  AND a13.b = a17.b 

  AND a14.a = a18.a 

  AND a15.a = a19.a 

  AND a16.f = 1 

  AND a18.c = 2 

  AND a19.c = 3 

  AND a17 IN (4,5,6) 

This query runs 10x faster with a bushy join plan compared to a 

left-deep join plan. In this case, the best join order was a bushy 

join plan (a11, a12, (a13, a17, a16), (a14, a18), (a15, a19)). 

Producing this join plan was not possible with our previous 

algorithm in [12] since none of the joins involved primary keys. It 

is worthwhile to note that the bushy join approach of [1] also 

would not be able to detect the bushy nature of this query because 

the seed tables a13, a14 and a15 had far smaller cardinality than 

their satellite tables and therefore, could not have passed the 

cardinality threshold of that method to be considered as a fact 

table. With our new algorithm, we are able to detect bushy 

patterns in many other queries in real customer workloads; a 

speedup of 5-10x is seen for such customer queries. 

8. RELATED WORK 
In the recent past, several Massively Parallel Processing (MPP) 

database systems such as SAP HANA [3], Teradata/Aster, 

Netezza [15], SQL Server PDW [14], Oracle Exadata [20], Pivotal 

GreenPlum [17], and Vertica [7] have gained popularity. A few 

systems have implemented and published literature about query 

optimization and planning for distributed database systems. We 

briefly summarize some of them in this section. 

SQL Server Parallel Data Warehouse (PDW) [14] uses a query 

optimizer built on top of the Microsoft SQL Server optimizer. The 

plan search space alternatives that are considered by the SQL 

Server are sent over to PDW Data Movement Service and these 

plans are then costed with distributed operator costs to choose a 

distributed plan. 

Orca [17] is the modular query optimizer architecture from 

Pivotal that is designed for big data. It is top-down query 

optimizer and can run outside the database system as a stand-

alone optimizer, thus providing the capability to support different 

computing architectures like Hadoop etc. Although the paper 

mentions about join ordering and rewrites, there is no explicit 

mention of how rewrites are costed, or any technique that leads to 

vast pruning of states in the dynamic programming search space. 

Also, the intermediate language of communication, Data 

eXchange Language (DXL) is based on XML while MemSQL 

ResultTables interface is based on still-popular SQL. 

Vertica [7] implements an industry strength optimizer for its 

column storage data that is organized into projections. The 

optimizer implements rewrites, cost-based join order selection, 

optimized for star/snowflake schemas. Vertica’s V2Opt optimizer 

improves on existing limitations (if join keys are not co-located) 

by replicating the pertinent projections to improve 

performance.  Again, there is no explicit mention of how rewrites 
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are costed, join orders are generated, what pruning strategies are 

used that would potentially overlap with the technical 

contributions of this paper. 

In the past, there have been several attempts to improve query 

optimization time. Bruno et al. [2] propose several polynomial 

heuristics that take into account selectivity, intermediate join size 

etc. Some other previous work [4][18] also propose several 

heuristics, but these techniques were designed before distributed 

query processing became widespread and therefore do not take 

data distribution into consideration. Another area where there 

have been attempts to improve query optimization time is in 

parallelizing the join enumeration process. Han et al. in [5] 

propose several techniques to parallelize parts of the System-R 

style enumerator and prototyped in PostgreSQL. Waas et al. in 

[19] propose techniques to parallelize the enumeration process for 

Cascade style enumerators.  Heimel et al. [6] suggest using GPU 

co-processor to speed up the query optimization process. 

9. CONCLUSION 
In this paper, we describe the architecture of the MemSQL Query 

Optimizer, a modern optimizer for a distributed database designed 

to optimize complex queries effectively and efficiently, in order to 

produce very efficient distributed query execution plans with fast 

optimization times. We discuss the problem of query rewrite 

decisions in a distributed database, argue that the method in 

existing systems of making these decisions oblivious of 

distributed costs leads to poor plans, and describe how the 

MemSQL query optimizer solves that problem. We describe 

strategies which enable the Enumerator to quickly optimize joins 

over an extremely large search space, including a new algorithm 

to efficiently form bushy join plans. Finally, we demonstrate the 

efficiency of our techniques over several queries from TPC-H 

benchmark and a real customer workload. 
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